Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between the C. elegans cell-death regulators CED-9 and CED-4

Abstract

Programmed cell death (apoptosis) is an evolutionarily conserved process used by multicellular organisms to eliminate cells that are not needed or are potentially detrimental to the organism1,2. Members of the Bcl-2 family of mammalian proteins are intimately involved in the regulation of apoptosis, but, their precise mechanism of action remains unresolved3–5. In Caenorhabditis elegans, the Bcl-2 homologue CED-9 prevents cell death by antagonizing the death-promoting activities of CED-3, a member of the Caspase family of death proteases, and of CED-4, a protein with no known mammalian homologue6–9. Here we show that CED-9 interacts physically with CED-4. Mutations that reduce or eliminate CED-9 activity also disrupt its ability to bind CED-4, suggesting that this interaction is important for CED-9 function. Thus, CED-9 might control C. elegans cell death by binding to and regulating CED-4 activity. We propose that mammalian Bcl-2 family members might control apoptosis in a similar way through interaction and regulation of CED-4 homologues or analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ellis, R. E., Yuan, J. & Horvitz, H. R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hacker, G. & Vaux, D. L. A sticky business. Curr. Biol. 5, 622–624 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Korsmeyer, S. J. Regulators of cell death. Trends Genet. 11, 101–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Chinnaiyan, A. M. & Dixit, V. M. The cell-death machine. Curr. Biol. 6, 555–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. C. elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hengartner, M. O. & Horvitz, H. R. C. elegans cell death gene ced-9 encodes a functional homolog of mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  9. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Hengartner, M. O. & Horvitz, H. R. Programmed cell death in C. elegans. Curr. Opin. Gen. Dev. 4, 581–586 (1994).

    Article  CAS  Google Scholar 

  11. Horvitz, H. R., Shaham, S. & Hengartner, M. O. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. LIX, 377–385 (1994).

    Article  Google Scholar 

  12. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Alnemri, E. S. et al. Human ICE/CED-3 protease nomenclature. Cell 87, 171 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Shaham, S. & Horvitz, H. R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nagata, S. Telling cells their time is up. Curr. Biol. 6, 1241–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Hengartner, M. O. & Horvitz, H. R. Activation of C. elegans cell death protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2. Nature 369, 318–320 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Chien, C. T., Bartel, P. L., Sternglanz, R. & Fields, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. USA 88, 9578–9582 (1991).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farrow, S. & Brown, R. New members of the Bcl-2 family and their protein partners. Curr. Opin. Genet. Dev. 6, 45–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Chen-Levy, Z., Nourse, J. & Cleary, M. L. The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation. Mol. Cell. Biol. 9, 701–710 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hockenbery, D., Nuñez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Krajewski, S. et al. Immnunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am. J. Pathol. 145, 1323–1336 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hockenbery, D. M., Oltvai, Z. N., Yin, X.-M., Milliman, C. L. & Korsmeyer, S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Hunter, J. J., Bond, B. L. & Parslow, T. G. Functional dissection of the human Bcl-2 protein: sequence requirements for inhibition of apoptosis. Mol. Cell. Biol. 16, 877–883 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Aelst, L., Joneson, T. & Bar-Sagi, D. Identification of a novel Rac 1-interacting protein involved in membrane ruffling. EMBO J. 15, 3778–3786 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Aelst, L. Two hybrid analysis of Ras-Raf interactions. In Methods in Molecular Biology (Humana, Totowa, NJ, USA, in the press).

  28. Miller, J. H. Assay of β-galatosidase. In Experiments in Molecular Genetics 352–355 (Cold Spring Harbor Eaboratory Press, Cold Spring Harbor, 1972).

    Google Scholar 

  29. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-x1, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spector, M., Desnoyers, S., Hoeppner, D. et al. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653–656 (1997). https://doi.org/10.1038/385653a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385653a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing