Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors

Abstract

The classical view of fast chemical synoptic transmission is that released neurotransmitter acts locally on postsynaptic receptors and is cleared from the synaptic cleft within a few milliseconds by diffusion and by specific reuptake mechanisms. This rapid clearance restricts the spread of neurotransmitter and, combined with the low affinities of many ionotropic receptors, ensures that synaptic transmission occurs in a point-to-point fashion1. We now show, however, that when transmitter release is enhanced at hippocampal mossy fibre synapses, the concentration of glutamate increases and its clearance is delayed; this allows it to spread away from the synapse and to activate presynaptic inhibitory metabotropic glutamate receptors (mGluRs). At normal levels of glutamate release during low-frequency activity, these presynaptic receptors are not activated. When glutamate concentration is increased by higher-frequency activity or by blocking glutamate uptake, however, these receptors become activated, leading to a rapid inhibition of transmitter release. This effect maybe related to the long-term depression of mossy fibre synaptic responses that has recently been shown after prolonged activation of presynaptic mGluRs (refs 2, 3). The use-dependent activation of presynaptic mGluRs that we describe here thus represents a negative feedback mechanism for controlling the strength of synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hille, B. Neuron 9, 187–195 (1992).

    Article  CAS  Google Scholar 

  2. Yokoi, M. et al. Science 273, 645–647 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Kobayashi, K., Manabe, T. & Takahashi, T. Science 273, 648–650 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Otis, T. S., Wu, Y.-C. & Trussell, L. O. J. Neurosci. 16, 1634–1644 (1996).

    Article  CAS  Google Scholar 

  5. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. J. Physiol. 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  6. Tong, G. & Jahr, C. E. Neuron 12, 51–59 (1994).

    Article  CAS  Google Scholar 

  7. Kullmann, D. M., Erdemli, G. & Asztely, F. Neuron 17, 461–474 (1996).

    Article  CAS  Google Scholar 

  8. Olverman, H. J., Jones, A. W., Mewett, K. N. & Watkins, J. C. Neuroscience 26, 17–31 (1988).

    Article  CAS  Google Scholar 

  9. Bergles, D. E. & Jahr, C. E. Neurosci. Abstr. 22, 797 (1996).

    Google Scholar 

  10. Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Proc. Natl Acad. Sci. USA 93, 13304–13309 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Nakanishi, S. Neuron 13, 1031–1037 (1994).

    Article  CAS  Google Scholar 

  12. Pin, J.-P. & Duvosin, R. Neuropharmacology 34, 1–26 (1995).

    Article  CAS  Google Scholar 

  13. Conn, P. J., Winder, D. G. & Gereau, R. W. I. in The Metabotropic Glutamate Receptors (eds Conn, P, J. & Patel, J.) (Humana, Totowa, NJ, 1994).

    Book  Google Scholar 

  14. Forsythe, I. D. & Clements, J. D. J. Physiol. 429, 1–16 (1990).

    Article  CAS  Google Scholar 

  15. Baskys, A. & Malenka, R. C. J. Physiol. 444, 687–701 (1991).

    Article  CAS  Google Scholar 

  16. Glaum, S. R. & Miller, R. J. J. Neurophysiol. 70, 2669–2672 (1993).

    Article  CAS  Google Scholar 

  17. Yamamoto, C., Sawada, S. & Takada, S. Exp. Brain Res. 51, 128–134 (1983).

    CAS  PubMed  Google Scholar 

  18. Lanthorn, T. H., Ganong, A. H. & Cotman, C. W. Brain Res. 290, 174–178 (1984).

    Article  CAS  Google Scholar 

  19. Manzoni, O. J., Castillo, P. E. & Nicoll, R. A. Neuropharmacology 34, 965–971 (1995).

    Article  CAS  Google Scholar 

  20. Hsia. A. Y. et al. Neuropharmacology 34, 1567–1572 (1995).

    Article  CAS  Google Scholar 

  21. Kamiya, H., Shinozaki, H. & Yamamoto, C. J. Physiol. 493, 447–455 (1996).

    Article  CAS  Google Scholar 

  22. Isaacson, J. S., Solís, J. M. & Nicoll, R. A. Neuron 10, 165–175 (1993).

    Article  CAS  Google Scholar 

  23. Patneau, D. K., & Mayer, M. L. J. Neurosci. 10, 2385–2399 (1990).

    Article  CAS  Google Scholar 

  24. Bridges, R. J., Stanley, M. S., Anderson, M. W., Cotman, C. W. & Chamberlin, A. R. J. Med. Chem. 34, 717–725 (1991).

    Article  CAS  Google Scholar 

  25. Hamlyn, L. H. J. Anat. 96, 112–126 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chicurel, M. E. & Harris, K. M. J. Comp. Neurol. 323, 1–14 (1992).

    Article  Google Scholar 

  27. Shigemoto, R. et al. Soc. Neurosci. Abstr. 21, 846 (1995).

    Google Scholar 

  28. Weisskopf, M. G. & Nicoll, R. A. Nature 376, 256–259 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scanziani, M., Salin, P., Vogt, K. et al. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630–634 (1997). https://doi.org/10.1038/385630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing