Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A massive black hole at the centre of the quiescent galaxy M32

Abstract

Massive black holes are thought to reside at the centres of many galaxies1,2, where they power quasars and active galactic nuclei. But most galaxies are quiescent, indicating that any central massive black hole present will be starved of fuel and therefore detectable only through its gravitational influence on the motions of the surrounding stars. M32 is a nearby, quiescent elliptical galaxy in which the presence of a massive black hole has been suspected3–9; however, the limited resolution of the observational data and the restricted classes of models used to interpret this data have made it difficult to rule out alternative explanations, such as models with an anisotropic stellar velocity distribution and no dark mass or models with a central concentration of dark objects (for example, stellar remnants or brown dwarfs). Here we present space-based high-resolution optical spectra of M32, which show that the stellar velocities near the centre of this galaxy exceed those inferred from previous ground-based observations. We use a range of general dynamical models to determine a central dark mass concentration of (3.4 ± 1.6) × 106 solar masses, contained within a region only 0.3 pc across. This leaves a massive black hole as the most plausible explanation of the data, thereby strengthening the view that such black holes exist even in quiescent galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rees, M. J. Science 247, 817–823 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Haehnelt, M. & Rees, M. J. Mon. Not. R. Astron. Soc. 263, 168–178 (1993).

    Article  ADS  Google Scholar 

  3. Kormendy, J. & Richstone, D. A. Rev. Astron. Astrophys. 33, 581–624 (1995).

    Article  ADS  Google Scholar 

  4. Tonry, J. L. Astrophys. J. 322, 632–642 (1987).

    Article  ADS  Google Scholar 

  5. Dressler, A. & Richstone, D. O. Astrophys. J. 324, 701–713 (1988).

    Article  ADS  Google Scholar 

  6. Richstone, D. O., Bower, G. & Dressler, A. Astrophys. J. 353, 118–122 (1990).

    Article  ADS  Google Scholar 

  7. Qian, E., de Zeeuw, P. T., van der Marel, R. P. & Hunter, C. Mon. Not. R. Astron. Soc. 274, 602–622 (1995).

    Article  ADS  Google Scholar 

  8. Dehnen, W. Mon. Not. R. Astron. Soc. 274, 919–932 (1995).

    Article  ADS  Google Scholar 

  9. Bender, R., Kormendy, J. & Dehnen, W. Astrophys. J. 464, L123–L126 (1996).

    Article  ADS  Google Scholar 

  10. van der Marel, R. P. et al. Mon. Not. R. Astron. Soc. 268, 521–543 (1994).

    Article  ADS  Google Scholar 

  11. Schwarzschild, M. Astrophys. J. 232, 236–247 (1979).

    Article  ADS  Google Scholar 

  12. Richstone, D. O. & Tremaine, S. Astrophys. J. 296, 370–378 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Lauer, T. R. et al. Astron. J. 104, 552–562 (1992).

    Article  ADS  Google Scholar 

  14. Lugger, P. M. et al. Astron. J. 104, 83–91 (1992).

    Article  ADS  Google Scholar 

  15. Crane, P. et al. Astron. J. 106, 1371–1393 (1993).

    Article  ADS  Google Scholar 

  16. Morris, M. Astrophys. J. 408, 496–506 (1993).

    Article  ADS  Google Scholar 

  17. Lee, H. M. Mon. Not. R. Astron. Soc. 272, 605–617 (1995).

    Article  ADS  Google Scholar 

  18. Goodman, J. & Lee, H. M. Astrophys. J. 337, 84–90 (1989).

    Article  ADS  Google Scholar 

  19. Quinlan, G. D. New Astron. 1, 255–270 (1996).

    Article  ADS  Google Scholar 

  20. Quinlan, G. D. & Shapiro, S. L. Astrophys. J. 343, 725–749 (1989).

    Article  ADS  Google Scholar 

  21. Lee, H. M. Astrophys. J. 418, 147–162 (1993).

    Article  ADS  Google Scholar 

  22. Benz, W. & Hills, J. G. Astrophys. J. 323, 614–628 (1987).

    Article  ADS  Google Scholar 

  23. Eskridge, P. B., White, R. E. & Davis, D. S. Astrophys. J. 463, L59–L62 (1996).

    Article  ADS  Google Scholar 

  24. Narayan, R., Yi, I. & Mahadevan, R. Nature 374, 623–625 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Harms, R. J. et al. Astrophys. J. 435, L35–L38 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Ferrarese, L., Ford, H. C. & Jaffe, W. Astrophys. J. 470, 444–459 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Kormendy, J. et al. Astrophys. J. 459, L57–L60 (1996).

    Article  ADS  Google Scholar 

  28. Eckart, A. & Genzel, R. Nature 383, 415–417 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Miyoshi, M. et al. Nature 373, 127–129 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Maoz, E. Astrophys. J. 447, L91–L94 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Marel, R., de Zeeuw, P., Rix, HW. et al. A massive black hole at the centre of the quiescent galaxy M32. Nature 385, 610–612 (1997). https://doi.org/10.1038/385610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing