Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Female infertility in mice lacking connexin 37


The signals regulating ovarian follicle development and the mechanisms by which they are communicated are largely undefined1. At birth, the ovary contains primordial follicles consisting of meiotically arrested oocytes surrounded by a single layer of supporting (granulosa) cells. Periodically, subsets of primordial follicles undergo further development during which the oocyte increases in size and the granulosa cells proliferate, stratify and develop a fluid-filled antrum. After ovulation, oocytes resume meiosis and granulosa cells retained in the follicle differentiate into steroidogenic cells, forming the corpus luteum1,2. It has been proposed that intercellular signalling through gap junction channels may influence aspects of follicular development3,4. Gap junctions are aggregations of intercellular channels composed of connexins, a family of at least 13 related proteins that directly connect adjacent cells allowing the diffusional movement of ions, metabolites, and other potential signalling molecules5. Here we show that connexin 37 is present in gap junctions between oocyte and granulosa cells and that connexin-37-deficient mice lack mature (Graafian) follicles, fail to ovulate and develop numerous inappropriate corpora lutea. In addition, oocyte development arrests before meiotic competence is achieved. Thus, cell–cell signalling through intercellular channels critically regulates the highly coordinated set of cellular interactions required for successful oogenesis and ovulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Eppig, J. J. Bioessays 13, 569–574 (1991).

    CAS  Article  Google Scholar 

  2. 2

    Wassermann, P. M. & Albertini, D. F. in The Physiology of Reproduction (eds Knobil, E. & Neill, J. D.) 79–122 (Raven, New York, 1994).

    Google Scholar 

  3. 3

    Anderson, E. & Albertini, D. F. J. Cell Biol. 71, 680–686 (1976).

    CAS  Article  Google Scholar 

  4. 4

    Gilula, N. B., Epstein, M. L. & Beers, W. H. J. Cell Biol. 78, 58–75 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Goodenough, D. A., Goliger, J. A. & Paul, D. L. Annu. Rev. Biochem. 65, 475–502 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Beyer, E. C., Kistler, J., Paul, D. L. & Goodenough, D. A. J. Cell Biol. 108, 596–605 (1989).

    Article  Google Scholar 

  7. 7

    Haefliger, J. A. et al. J. Biol. Chem. 267, 2057–2064 (1992).

    CAS  PubMed  Google Scholar 

  8. 8

    Reed, K. E. et al. J. Clin Invest. 91, 997–1004 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Goliger, J. A. & Paul, D. L. Dev. Dyn. 200, 1–13 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Valdimarsson, G., De Sousa, P. A. & Kidder, G. M. Mol. Reprod. Dev. 36, 7–15 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Bjorkman, N. Acta Anat. 51, 125–147 (1962).

    CAS  Article  Google Scholar 

  12. 12

    El-Fouly, M. A., Cook, B., Nekola, M. & Nalbandov, A. V. Endocrinology 87, 286–293 (1970).

    CAS  Article  Google Scholar 

  13. 13

    Sorensen, R. A. & Wassarman, P. M. Dev. Biol. 50, 531–536 (1976).

    CAS  Article  Google Scholar 

  14. 14

    Mattson, B. A. & Albertini, D. F. Mol. Reprod. Dev. 25, 374–383 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Cho, W. K., Stern, S. & Biggers, J. D. J. Exp. Zool. 187, 383–386 (1974).

    CAS  Article  Google Scholar 

  16. 16

    Dekel, N. & Beers, W. H. Proc. Natl Acad. Sci. USA 75, 4369–4373 (1978).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bornslaeger, E. A. & Schultz, R. M. Biol. Reprod. 33, 698–704 (1985).

    CAS  Article  Google Scholar 

  18. 18

    Bergoffen, J. et al. Science 262, 2039–2042 (1993).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Britz-Cunningham, S. H., Shah, M. M., Zuppan, C. W. & Fletcher, W. H. N. Engl. J. Med. 332, 1323–1329 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Reaume, A. G. et al. Science 267, 1831–1834 (1995).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Nelson, L. M. et al. J. Clin. Endocrinol. Metab. 79, 1470–1475 (1994).

    CAS  PubMed  Google Scholar 

  22. 22

    Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Cell 65, 1153–1163 (1991).

    CAS  Article  Google Scholar 

  23. 23

    Li, E., Bestor, T. H. & Jaenisch, R. Cell 69, 915–926 (1992).

    CAS  Article  Google Scholar 

  24. 24

    Willecke, K. et al. J. Cell Biol. 114, 1049–1057 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simon, A., Goodenough, D., Li, E. et al. Female infertility in mice lacking connexin 37. Nature 385, 525–529 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing