Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of the GTPase-activating domain from p50rhoGAP

Abstract

Members of the Rho family of small G proteins transduce signals from plasma-membrane receptors and control cell adhesion, motility and shape by actin cytoskeleton formation1–4. They also activate other kinase cascades. Like all other GTPases, Rho proteins act as molecular switches, with an active GTP-bound form and an inactive GDP-bound form5. The active conformation is promoted by guanine-nucleotide exchange factors, and the inactive state by GTPase-activating proteins (GAPs) which stimulate the intrinsic GTPase activity of small G proteins6. Rho-specific GAP domains are found in a wide variety of large, multi-functional proteins7. Here we report the crystal structure of an active 242-residue C-terminal fragment of human p50rhoGAP8. The structure is an unusual arrangement of nine α-helices, the core of which includes a four-helix bundle. Residues conserved across the rhoGAP family are largely confined to one face of this bundle, which may be an interaction site for target G proteins. In particular, we propose that Arg 85 and Asn 194 are involved in binding G proteins and enhancing GTPase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paterson, H. F. et al. J. Cell Biol. 111, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  2. Ridley, A. J. & Hall, A. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  3. Ridley, A. J., Paterson, H. F., Johnson, C. L., Diekmann, D. & Hall, A. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  4. Ridley, A. J. J. Cell Sci. (suppl.) 18, 127–131 (1994).

    Article  CAS  Google Scholar 

  5. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Boguski, M. S. & McCormick, F. Nature 366, 643–654 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Lamarche, N. & Hall, A. Trends Genet. 10, 436–440 (1994).

    Article  CAS  Google Scholar 

  8. Lancaster, C. A. et al. J. Biol. Chem. 26, 1137–1142 (1994).

    Google Scholar 

  9. Hall, A. et al. J. Mol. Biol. 211, 11–16 (1990).

    Article  CAS  Google Scholar 

  10. Mussachio, A., Cantley, L. C. & Harrison, S. C. Proc. Natl Acad. Sci. USA 93, 14373–14378 (1997).

    Article  ADS  Google Scholar 

  11. Zheng, Y., Bagrodia, S. & Cerione, R. A. J. Cell Biol. 269, 18727–18730 (1994).

    CAS  Google Scholar 

  12. Otwinowski, Z. & Minor, W. Data Colleciton and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warringon, 1993).

    Google Scholar 

  13. CCP4 Acta Crystallogr. D50, 760–763 (1994).

  14. Terwilliger, T. C., Kim, S. H. & Eisenberg, D. Acta Crystallogr. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  15. Otwinowski, Z. Isomorphous Replacement and Anomalous Scattering (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (SERC Daresbury Laboratory, Warrington, 1991).

    Google Scholar 

  16. Jones, T. A., Zhou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  17. Lamzin, V. S. & Wilson, K. S. Acta Crystallogr. D49, 127–149 (1993).

    Google Scholar 

  18. Carson, M. J. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  19. Settleman, J., Varasingham, V., Foster, L. C. & Weinberg, R. A. Cell 64, 539–549 (1992).

    Article  Google Scholar 

  20. Lifschitz, B. et al. Oncogene 2, 113–117 (1988).

    Google Scholar 

  21. Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Science 257, 803–806 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Otsu, M. et al. Cell 65, 91–104 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, T., Xiao, B., Dodson, E. et al. The structure of the GTPase-activating domain from p50rhoGAP. Nature 385, 458–461 (1997). https://doi.org/10.1038/385458a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385458a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing