Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The C-terminal domain of RNA polymerase II couples mRNA processing to transcription

Abstract

Messenger RNA is produced by RNA polymerase II (pol II) transcription, followed by processing of the primary transcript. Transcription, splicing and cleavage–polyadenylation can occur independently in vitro, but we demonstrate here that these processes are intimately linked in vivo. We show that the carboxy-terminal domain (CTD) of the pol II large subunit is required for efficient RNA processing. Splicing, processing of the 3′ end and termination of transcription downstream of the poly(A) site, are all inhibited by truncation of the CTD. We found that the cleavage–polyadenylation factors CPSF and CstF specifically bound to CTD affinity columns and copurified with pol II in a high-molecular-mass complex. Our demonstration of an association between the CTD and 3′-processing factors, considered together with reports of a similar interaction with splicing factors1,2, suggests that an mRNA 'factory' exists which carries out coupled transcription, splicing and cleavage–polyadenylation of mRNA precursors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yuryev, A. et al. Proc. Natl Acad. Sci. USA 93, 6975–6980 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Mortillaro, M. J. et al. Proc. Natl Acad. Sci. USA 93, 8253–8257 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Gerber, H. P. et al. Nature 374, 660–662 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Zehring, W. A., Lee, J. M., Weeks, J. R., Jokerst, R. S. & Greenleaf, A. L. Proc. Natl Acad. Sci. USA 85, 3698–3702 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Nesic, D., Cheng, J. & Maquat, L. E. Mol. Cell. Biol. 13, 3359–3369 (1993).

    Article  CAS  Google Scholar 

  6. Niwa, M., Rose, S. D. & Berget, S. M. Genes Dev. 4, 1552–1559 (1990).

    Article  CAS  Google Scholar 

  7. Connelly, S. & Manley, J. L. Genes Dev. 2, 440–452 (1988).

    Article  CAS  Google Scholar 

  8. Logan, J., Falck, P. E., Darnell, J. E. J. & Shenk, T. Proc. Natl Acad. Sci. USA 84, 8306–8310 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Whitelaw, E. & Proudfoot, N. EMBO J. 5, 2915–2922 (1986).

    Article  CAS  Google Scholar 

  10. Usheva, A. et al. Cell 69, 871–881 (1992).

    Article  CAS  Google Scholar 

  11. Takagaki, Y. & Manley, J. L. J. Biol. Chem. 267, 23471–23474 (1992).

    CAS  PubMed  Google Scholar 

  12. Ossipow, V., Tassan, J. P., Nigg, E. A. & Schibler, U. Cell 83, 137–146 (1995).

    Article  CAS  Google Scholar 

  13. Maldonado, E. et al. Nature 381, 86–89 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Smale, S. T. & Tijan, R. Mol. Cell. Biol. 5, 5352–5362 (1985).

    Article  Google Scholar 

  15. Sisodia, S. S., Sollner, W. B. & Cleveland, D. W. Mol. Cell. Biol. 7, 3602–3612 (1987).

    Article  CAS  Google Scholar 

  16. Mifflin, R. C. & Kellems, R. E. J. Biol. Chem. 266, 19593–19598 (1991).

    CAS  PubMed  Google Scholar 

  17. Greenleaf, A. L. Trends Biochem. Sci. 18, 117–119 (1993).

    Article  CAS  Google Scholar 

  18. Beyer, A. L. & Osheim, Y. N. Genes Dev. 2, 754–765 (1988).

    Article  CAS  Google Scholar 

  19. Wuarin, J. & Schibler, U. Mol. Cell Biol. 14, 7219–7225 (1994).

    Article  CAS  Google Scholar 

  20. Lutz, C. S. et al. Genes Dev. 10, 325–337 (1996).

    Article  CAS  Google Scholar 

  21. Boelens, W. C. et al. Cell 72, 881–892 (1993).

    Article  CAS  Google Scholar 

  22. Zhang, G., Taneja, K. L., Singer, R. H. & Green, M. R. Nature 372, 809–812 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Mattaj, I. W. Nature 372, 727–728 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Schul, W. et al. EMBO J. 15, 2883–2892 (1996).

    Article  CAS  Google Scholar 

  25. Blau, J. et al. Mol. Cell. Biol. 16, 2044–2055 (1996).

    Article  CAS  Google Scholar 

  26. Lieber, A., Kiessing, U. & Strauss, M. Nucleic Acids Res. 17, 8485–8493 (1989).

    Article  CAS  Google Scholar 

  27. West, M. & Corden, J. Genetics 140, 1223–1233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peterson, S. R., Dvir, A., Anderson, C. W. & Dynan, W. S. Genes Dev. 6, 426–438 (1992).

    Article  CAS  Google Scholar 

  29. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  30. Jenny, A., Minvielle-Bastia, L., Preker, P. & Keller, W. Science 274, 1514–1517 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCracken, S., Fong, N., Yankulov, K. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997). https://doi.org/10.1038/385357a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385357a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing