Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-organization of microtubules and motors

Abstract

Cellular structures are established and maintained through a dynamic interplay between assembly and regulatory processes. Self-organization of molecular components provides a variety of possible spatial structures: the regulatory machinery chooses the most appropriate to express a given cellular function1. Here we study the extent and the characteristics of self-organization using microtubules and molecular motors2 as a model system. These components are known to participate in the formation of many cellular structures, such as the dynamic asters found in mitotic and meiotic spindles3,4. Purified motors and microtubules have previously been observed to form asters in vitro5. We have reproduced this result with a simple system consisting solely of multi-headed constructs of the motor protein kinesin6 and stabilized microtubules. We show that dynamic asters can also be obtained from a homogeneous solution of tubulin and motors. By varying the relative concentrations of the components, we obtain a variety of self-organized structures. Further, by studying this process in a constrained geometry of micro-fabricated glass chambers7, we demonstrate that the same final structure can be reached through different assembly ‘pathways’.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-organization of taxol-stabilized microtubules and kinesin constructs into asters.
Figure 2: Self-organization in the constrained geometry of micro-fabricated chambers etched in glass.
Figure 3: Different large-scale patterns formed through self-organization of microtubules and motors.

References

  1. Kirschner, M. & Mitchison, T. Beyond self-assembly: From microtubules to morphogenesis. Cell 45, 329–342 (1986).

    CAS  Article  PubMed  Google Scholar 

  2. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996).

    CAS  Article  PubMed  Google Scholar 

  3. Hyman, A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).

    CAS  Article  PubMed  Google Scholar 

  4. Barton, N. R. & Goldstein, L. S. B. Going mobile: Microtubule motors and chromosome segregation. Proc. Natl Acad. Sci. USA 93, 1735–1742 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Urrutia, R., McNiven, M., Albanesi, J., Murphy, D. & Kachar, B. Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro. Proc. Natl Acad. Sci. USA 88, 6701–6705 (1991).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Berliner, E. et al. Microtubule movement by a biotinilated kinesin bound to a streptavidin-coated surface. J. Biol. Chem. 269, 8610–8615 (1994).

    CAS  PubMed  Google Scholar 

  7. Holy, T., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA 94, 6228–6233 (1997).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Nicklas, R. B. & Ward, S. C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994).

    CAS  Article  PubMed  Google Scholar 

  9. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Sawin, K. E. & Mitchison, T. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–940 (1991).

    CAS  Article  PubMed  Google Scholar 

  11. Hunt, A. J., Gittes, F. & Howard, J. The force exerted by a single molecule against a viscous load. Biophys. J. 67, 766–781 (1994).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    CAS  Article  PubMed  Google Scholar 

  13. Mayhofer, E. & Howard, J. The force generated by a single kinesin molecule against an elastic load. Proc. Natl Acad. Sci. USA 92, 574–578 (1995).

    ADS  Article  Google Scholar 

  14. Kashina, A. S. et al. Abipolar kinesin. Nature 379, 270–272 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Arnal, I. & Wade, R. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).

    CAS  Article  PubMed  Google Scholar 

  16. Verde, F., Berrez, J.-M., Antony, C. & Karsenti, E. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: Requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112, 1177–1187 (1991).

    CAS  Article  PubMed  Google Scholar 

  17. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: The central role of gamma-tubulin. Cell 76, 623–637 (1994).

    CAS  Article  PubMed  Google Scholar 

  18. Mitchison, T. & Kirschner, M. Microtubule assembly nucleated by isolated centrosomes and dynamic instability of microtubule growth. Nature 312, 232–242 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  19. Theurkauf, W. E. Premature microtubule-dependent cytoplasmic streaming in cappucino and spire mutant oocytes. Science 265, 2093–2096 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  20. Rodionov, V. & Borisy, G. G. Self-centring activity of cytoplasm. Nature 386, 170–173 (1997).

    ADS  CAS  Article  PubMed  Google Scholar 

  21. Vernos, I. & Karsenti, E. Motors involved in spindle assembly and chromosome segregation. Curr. Opin. Cell Biol. 8, 4–9 (1996).

    CAS  Article  PubMed  Google Scholar 

  22. McNally, F. J. Modulation of microtubule dynamics during the cell cycle. Curr. Opin. Cell Biol. 8, 23–29 (1996).

    CAS  Article  PubMed  Google Scholar 

  23. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(2)(1993).

  24. Tabony, J. Morphological bifurcations involving reaction–diffusion processes during microtubule formation. Science 264, 245–248 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  25. Young, E. C., Berliner, E., Mahtani, H., Perez-Ramirez, B. & Gelles, J. Subunit interactions in dimeric kinesin heavy chain derivatives that lack the kinesin rod. J. Biol. Chem. 270, 3926–3931 (1995).

    CAS  Article  PubMed  Google Scholar 

  26. Bayer, E. & Wilchek, M. Avidin and streptavidin. Methods Enzymol. 184, 51–67 (1990).

    Article  Google Scholar 

  27. Dogterom, M., Leibler, S. Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 20, 1347–1350 (1993).

    ADS  Article  Google Scholar 

  28. Erickson, H. & O'Brien, E. Microtubule dynamic instability and GTP hydrolysis. Annu. Rev. Biophys. Biomol. Struct. 21, 145–166 (1992).

    CAS  Article  PubMed  Google Scholar 

  29. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Young and J. Gelles for kinesin plasmids; J. Johnson for taxol; T. Holy for help with the preparation of glass chambers; and T. Holy, M. Elowitz, E. Wolf, E. Karsenti, T.Mitchison, J. Howard and S. Block for discussions. This work was supported by grants from the NIH, the NSF and the HFSP, a fellowship from the Deutsche Forschungsgemeinschaft (T.S.) and the French Government (F.J.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Leibler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ndlec, F., Surrey, T., Maggs, A. et al. Self-organization of microtubules and motors. Nature 389, 305–308 (1997). https://doi.org/10.1038/38532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38532

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing