Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for polaronic supercarriers in the copper oxide superconductors La2–xSrxCuO4

Abstract

High-temperature superconductivity is known to involve the pairing of charge carriers, but the precise nature of these carriers and the mechanism of their pairing remain unclear. The copper oxides are known to exhibit a strong Jahn–Teller effect — in which spontaneous lattice distortions remove the degeneracy of the electronic ground state — and it has been suggested that the charge carriers are Jahn–Teller polarons (bare charge carriers accompanied by local lattice distortions). In fact, the demonstration1 that a strong Jahn–Teller effect can lead to the formation of such polarons led to the original discovery of high-temperature superconductivity2. Still, direct evidence that Jahn–Teller polarons exist in the superconducting state of the copper oxides has been lacking, although some indirect evidence comes from their recent discovery3 in the structurally similar but non-superconducting manganite La1–xCaxMnO3. Here we report the results of magnetization and thermal expansion measurements on samples of the copper oxide superconductor La2–xSrxCuO4 which characterize the oxygen-isotope effects on the carrier density and on the in-plane penetration depth. We find a negligible isotope effect on the former, but a large effect on the latter. Specific quantitative features of the results show that polaronic charge carriers exist and condense into Cooper pairs in the copper oxide superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Höck, K.-H., Nickisch, H. & Thomas, H. Helv. Phys. Acta. 56, 237–243 (1983).

    Google Scholar 

  2. Bednorz, J. G. & Müller, K. A. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Zho, G. M., Conder, K., Keller, H. & Müller, K. A. Nature 381, 676–678 (1996).

    Article  ADS  Google Scholar 

  4. Proc. Int. Workshop on Anharmonic Properties of High-Tc Cuprates (eds Mihailowic, D., Ruani, G., Kaldis, E. & Müller, K. A.) 118–146 (World Scientific, Singapore, 1994).

  5. Bi, X. X. & Eklund, P. C. Phys. Rev. Lett. 70, 2625–2628 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Alexandrov, A. S. & Mott, N. F. Int. J. Mod. Phys. 8, 2075–2109 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Crawford, M. K., Kunchur, M. N., Farneth, W. E., McCarron, E. M. & Poon, S. J. Phys. Rev. B 41, 282–287 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Crawford, M. K., Farneth, W. E., McCarron, E. M. Harlow, R. L. & Moudden, A. H. Science 250, 1390–1394 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Ronay, M., Frisch, M. A. & McGuire, T. R. Phys. Rev. B 45, 355–360 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Franck, J. P., Harker, S. & Brewer, J. H. Phys. Rev. Lett. 71, 283–286 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Bornemann, H. J. & Morris, D. E. Phys. Rev. B 44, 5322–5325 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Zhao, G. M., Singh, K. K., Sinha, A. P. B. & Morris, D. E. Phys. Rev. B 52, 6840–6844 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Shoenberg, D. Proc. R. Soc. Lond. A 175, 49–70 (1940).

    Article  ADS  CAS  Google Scholar 

  14. Kogan, V. G., Fang, M. M. & Mitra, S. Phys. Rev. B 38, 11958–11961 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Uemura, Y. J. et al. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Sarrao, J. L. et al. Phys. Rev. B 50, 13125–13131 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Okajima, Y., Hashimoto, S. & Yamaya, K. Physica C 235–240, 1317–1318 (1994).

    Article  ADS  Google Scholar 

  18. Kato, M., Maeno, Y. & Fujita, T. Physica C 152, 116–120 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Dabrowski, B. et al. Phys. Rev. Lett. 76, 1348–1351 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Fiory, A. T. et al. Phys. Rev. Lett. 65, 3441–3444 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Shibauchi, T. et al. Phys. Rev. Lett. 72, 2263–2266 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Ekino, T. M., Fujii, H. & Akimitsu, J. Physica C 235–240, 1899–1900 (1994).

    Article  ADS  Google Scholar 

  23. Chen, X. K., Irwin, J. C., Trodahl, H. J., Kimura, T. & Kishio, K. Phys. Rev. Lett. 73, 3290–3293 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Ding, H. et al. Nature 382, 51–54 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Loram, J. W., Mirza, K. A., Wade, J. M., Cooper, J. R. & Liang, W. Y. Physica C 235–240, 134–137 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Gm., Hunt, M., Keller, H. et al. Evidence for polaronic supercarriers in the copper oxide superconductors La2–xSrxCuO4. Nature 385, 236–239 (1997). https://doi.org/10.1038/385236a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385236a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing