Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo dendritic calcium dynamics in neocortical pyramidal neurons

Abstract

THE dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial2, and seem to be sensitive to resting membrane potential, ionic composition, and degree of channel inactivation, and depend on the intensity and pattern of synaptic stimulation. This makes it difficult to extrapolate from in vitro experiments to the situation in the intact brain. Here we show that two-photon excitation laser scanning microscopy3 can penetrate the highly scattering tissue of the intact brain. We used this property to measure sensory stimulus-induced dendritic [Ca2+] dynamics of layer 2/3 pyramidal neurons of the rat primary vibrissa (Sm1) cortex in vivo. Simultaneous recordings of intracellular voltage and dendritic [Ca2+] dynamics during whisker stimulation or current injection showed increases in [Ca2+] only in coincidence with Na+ action potentials. The amplitude of these [Ca2+] transients at a given location was approximately proportional to the number of Na+ action potentials in a short burst. The amplitude for a given number of action potentials was greatest in the proximal apical dendrite and declined steeply with increasing distance from the soma, with little Ca2+ accumulation in the most distal branches, in layer 1. This suggests that widespread Ca2+ action potentials were not generated, and any significant [Ca2+] increase depends on somatically triggered Na+ action potentials.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Yuste, R. & Tank, D. W. Neuron 16, 701–716 (1996).

    Article  CAS  Google Scholar 

  2. Regehr, W. G. & Armstrong, C. M. Curr. Biol. 4, 436–439 (1994).

    Article  CAS  Google Scholar 

  3. Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Stuart, G. J. & Sakmann, B. Nature 367, 69–72 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Jaffe, D. B. et al. Nature 357, 244–246 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Magee, J. C. & Johnston, D. Science 268, 301–304 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Science 268, 297–300 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Yuste, R. & Denk, W. Nature 375, 682–684 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Wong, R. K. S., Prince, D. A. & Basbaum, A. I. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Kim, H. G. & Connors, B. W. J. Neurosci. 13, 5301–5311 (1993).

    Article  CAS  Google Scholar 

  12. Yuste, R., Gutnick, M. J., Saar, D., Delaney, K. R. & Tank, D. W. Neuron 13, 23–43 (1994).

    Article  CAS  Google Scholar 

  13. Andreasen, M. & Lambert, J. D. C. J. Physiol. (Lond.) 483, 421–441 (1995).

    Article  CAS  Google Scholar 

  14. Turner, R. W., Meyers, E. R., Richardson, D. L. & Barker, J. L. J. Neurosci. 11, 2270–2280 (1991).

    Article  CAS  Google Scholar 

  15. Kim, H. G., Beierlein, M. & Connors, B. W. J. Neurophysiol. 74, 1810–1814 (1995).

    Article  CAS  Google Scholar 

  16. Buzsaki, G., Penttonen, M., Nadasdy, Z. & Bragin, A. Proc. Natl Acad. Sci. USA 93, 9921–9925 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Tsubokawa, H. & Ross, W. N. J. Neurophysiol. 76, 2896–2906 (1996).

    Article  CAS  Google Scholar 

  18. Hirsch, J. A., Alonso, J.-M. & Reid, R. C. Nature 378, 612–616 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Denk, W. et al. J. Neurosci. Methods 54, 151–162 (1994).

    Article  CAS  Google Scholar 

  20. Connors, B. W. & Gutnick, M. J. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  21. Carvell, G. E. & Simons, D. J. Brain Res. 448, 186–191 (1988).

    Article  CAS  Google Scholar 

  22. Helmchen, F., Imoto, K. & Sakmann, B. Biophys. J. 70, 1069–1081 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Andreasen, M. & Hablitz, J. J. J. Neurophysiol. 69, 1966–1975 (1993).

    Article  CAS  Google Scholar 

  24. Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. J. J. Neurosci. 13, 4609–4621 (1993).

    Article  CAS  Google Scholar 

  25. Gutfreund, Y., Yarom, Y. & Segev, I. J. Physiol. (Lond.) 483, 621–640 (1995).

    Article  CAS  Google Scholar 

  26. Callaway, J. C. & Ross, W. N. J. Neurophysiol. 74, 1395–1403 (1995).

    Article  CAS  Google Scholar 

  27. Bear, M. F. & Malenka, R. C. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    Article  CAS  Google Scholar 

  28. Kleinfeld, D. & Delaney, K. R. J. Comp. Neurol. 375, 89–108 (1996).

    Article  CAS  Google Scholar 

  29. Carvell, G. E. & Simons, D. J. J. Neurosci. 10, 2638–2648 (1990).

    Article  CAS  Google Scholar 

  30. Feller,,M. B., Delaney, K. R. & Tank, D. W. J. Neurophysiol. 76, 381–401 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svoboda, K., Denk, W., Kleinfeld, D. et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997). https://doi.org/10.1038/385161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing