In vivo dendritic calcium dynamics in neocortical pyramidal neurons

Abstract

THE dendrites of mammalian pyramidal neurons contain a rich collection of active conductances that can support Na+ and Ca2+ action potentials (for a review see ref. 1). The presence, site of initiation, and direction of propagation of Na+ and Ca2+ action potentials are, however, controversial2, and seem to be sensitive to resting membrane potential, ionic composition, and degree of channel inactivation, and depend on the intensity and pattern of synaptic stimulation. This makes it difficult to extrapolate from in vitro experiments to the situation in the intact brain. Here we show that two-photon excitation laser scanning microscopy3 can penetrate the highly scattering tissue of the intact brain. We used this property to measure sensory stimulus-induced dendritic [Ca2+] dynamics of layer 2/3 pyramidal neurons of the rat primary vibrissa (Sm1) cortex in vivo. Simultaneous recordings of intracellular voltage and dendritic [Ca2+] dynamics during whisker stimulation or current injection showed increases in [Ca2+] only in coincidence with Na+ action potentials. The amplitude of these [Ca2+] transients at a given location was approximately proportional to the number of Na+ action potentials in a short burst. The amplitude for a given number of action potentials was greatest in the proximal apical dendrite and declined steeply with increasing distance from the soma, with little Ca2+ accumulation in the most distal branches, in layer 1. This suggests that widespread Ca2+ action potentials were not generated, and any significant [Ca2+] increase depends on somatically triggered Na+ action potentials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Yuste, R. & Tank, D. W. Neuron 16, 701–716 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Regehr, W. G. & Armstrong, C. M. Curr. Biol. 4, 436–439 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stuart, G. J. & Sakmann, B. Nature 367, 69–72 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Jaffe, D. B. et al. Nature 357, 244–246 (1992).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Magee, J. C. & Johnston, D. Science 268, 301–304 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Science 268, 297–300 (1995).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Yuste, R. & Denk, W. Nature 375, 682–684 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Wong, R. K. S., Prince, D. A. & Basbaum, A. I. Proc. Natl Acad. Sci. USA 76, 986–990 (1979).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kim, H. G. & Connors, B. W. J. Neurosci. 13, 5301–5311 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Yuste, R., Gutnick, M. J., Saar, D., Delaney, K. R. & Tank, D. W. Neuron 13, 23–43 (1994).

    CAS  Article  Google Scholar 

  13. 13

    Andreasen, M. & Lambert, J. D. C. J. Physiol. (Lond.) 483, 421–441 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Turner, R. W., Meyers, E. R., Richardson, D. L. & Barker, J. L. J. Neurosci. 11, 2270–2280 (1991).

    CAS  Article  Google Scholar 

  15. 15

    Kim, H. G., Beierlein, M. & Connors, B. W. J. Neurophysiol. 74, 1810–1814 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Buzsaki, G., Penttonen, M., Nadasdy, Z. & Bragin, A. Proc. Natl Acad. Sci. USA 93, 9921–9925 (1996).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Tsubokawa, H. & Ross, W. N. J. Neurophysiol. 76, 2896–2906 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Hirsch, J. A., Alonso, J.-M. & Reid, R. C. Nature 378, 612–616 (1995).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Denk, W. et al. J. Neurosci. Methods 54, 151–162 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Connors, B. W. & Gutnick, M. J. Trends Neurosci. 13, 99–104 (1990).

    CAS  Article  Google Scholar 

  21. 21

    Carvell, G. E. & Simons, D. J. Brain Res. 448, 186–191 (1988).

    CAS  Article  Google Scholar 

  22. 22

    Helmchen, F., Imoto, K. & Sakmann, B. Biophys. J. 70, 1069–1081 (1996).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Andreasen, M. & Hablitz, J. J. J. Neurophysiol. 69, 1966–1975 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. J. J. Neurosci. 13, 4609–4621 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Gutfreund, Y., Yarom, Y. & Segev, I. J. Physiol. (Lond.) 483, 621–640 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Callaway, J. C. & Ross, W. N. J. Neurophysiol. 74, 1395–1403 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Bear, M. F. & Malenka, R. C. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Kleinfeld, D. & Delaney, K. R. J. Comp. Neurol. 375, 89–108 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Carvell, G. E. & Simons, D. J. J. Neurosci. 10, 2638–2648 (1990).

    CAS  Article  Google Scholar 

  30. 30

    Feller,,M. B., Delaney, K. R. & Tank, D. W. J. Neurophysiol. 76, 381–401 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Svoboda, K., Denk, W., Kleinfeld, D. et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997). https://doi.org/10.1038/385161a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing