Letter | Published:

Leading-edge vortices in insect flight

Naturevolume 384pages626630 (1996) | Download Citation

Subjects

Abstract

INSECTS cannot fly, according to the conventional laws of aerodynamics: during flapping flight, their wings produce more lift than during steady motion at the same velocities and angles of attack1–5. Measured instantaneous lift forces also show qualitative and quantitative disagreement with the forces predicted by conventional aerodynamic theories6–9. The importance of high-life aerodynamic mechanisms is now widely recognized but, except for the specialized fling mechanism used by some insect species1,10–13, the source of extra lift remains unknown. We have now visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model—the flapper. An intense leading-edge vortex was found on the down-stroke, of sufficient strength to explain the high-lift forces. The vortex is created by dynamic stall, and not by the rotational lift mechanisms that have been postulated for insect flight14–16. The vortex spirals out towards the wingtip with a spanwise velocity comparable to the flapping velocity. The three-dimensional flow is similar to the conical leading-edge vortex found on delta wings, with the spanwise flow stabilizing the vortex.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Weis-Fogh, T. J. Exp. Biol. 59, 169–230 (1973).

  2. 2

    Ellington, C. P. Phil. Trans. R. Soc. Lond. B 305, 145–181 (1984).

  3. 3

    Ennos, A. R. J. Exp. Biol. 142, 49–85 (1989).

  4. 4

    Dudley, R. & Ellington, C. P. J. Exp. Biol. 148, 53–88 (1990).

  5. 5

    Dudley, R. J. Exp. Biol. 198, 1065–1070 (1995).

  6. 6

    Cloupeau, M., Devillers, J. F. & Devezeaux, D. J. Exp. Biol. 80, 1–15 (1979).

  7. 7

    Wilkin, P. J. J. Kansas Entomol. Soc. 63, 316–328 (1990).

  8. 8

    Zanker, J. M. & Götz, K. G. Phil. Trans. R. Soc. Lond. B 327, 19–44 (1990).

  9. 9

    Wilkin, P. J. & Williams, M. H. Physiol. Zool. 66, 1015–1044 (1993).

  10. 10

    Maxworthy, T. J. Fluid Mech. 93, 47–63 (1979).

  11. 11

    Edwards, R. H. & Cheng, H. K. J. Fluid Mech. 120, 463–473 (1982).

  12. 12

    Spedding, G. R. & Maxworthy, T. J. Fluid Mech. 165, 247–272 (1986).

  13. 13

    Sunada, S., Kawachi, K., Watanabe, I. & Azuma, A. J. exp. Biol. 183, 217–248 (1993).

  14. 14

    Nachtigall, W. J. Comp. Physiol. 133, 351–355 (1979).

  15. 15

    Ellington, C. P. Phil. Trans. R. Soc. Lond. B 305, 79–113 (1984).

  16. 16

    Ellington, C. P. in Biological Fluid Dynamics (eds Ellington, C. P. & Pedley, T. J.) Symp. Soc. Exp. Biol. 49, 109–129 (1995).

  17. 17

    Brodsky, A. K. & Ivanov, V. D. Zool. Zhum. 63, 197–208 (1984).

  18. 18

    Brodsky, A. K. & Grodnitsky, D. L. Ent. Obozr. 64, 484–492 (1985).

  19. 19

    Brodsky, A. K. J. Exp. Biol. 161, 77–95 (1991).

  20. 20

    Grodnitsky, D. L. & Morozov, P. P. J. Exp. Biol. 169, 143–163 (1992).

  21. 21

    Grodnitsky, D. L. & Morozov, P. P. J. Exp. Biol. 182, 11–40 (1993).

  22. 22

    Brodsky, A. K. The Evolution of Insect Flight (Oxford Univ. Press, Oxford, 1994).

  23. 23

    Willmott, A. P., Ellington, C. P. & Thomas, A. L. R. Phil. Trans. R. Soc. Lond. B (in the press).

  24. 24

    Dickinson, M. H. & Götz, K. G. J. Exp. Biol. 174, 45–64 (1993).

  25. 25

    Dickinson, M. H. J. Exp. Biol. 192, 179–206 (1994).

  26. 26

    Van den Berg, C. & Ellington, C. P. Phil. Trans. R. Soc. Lond. B (in the press).

  27. 27

    Van den Berg, C. & Ellington, C. P. Phil. Trans. R. Soc. Lond. B (in the press).

  28. 28

    Wu, J. Z., Vakili, A. D. & Wu, J. M. Prog. Aerospace Sci. 28, 73–131 (1991).

  29. 29

    De Vries, O. Annu. Rev. Fluid Mech. 15, 77–96 (1983).

  30. 30

    Harris, F. D. J. Am. Helicopter Soc. 11, 1–21 (1966).

Download references

Author information

Author notes

    • Coen van den Berg

    Present address: Faculty of Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands

    • Alexander P. Willmott

    Present address: Kawachi Millibioflight Project, Japan Science and Technology Corporation (JST), Park Building 3F, 4-7-6 Komaba, Meguro-ku, Tokyo, 153, Japan

    • Adrian L. R. Thomas

    Present address: Department of Zoology, University of Oxford, South Parks Road, Oxford, 0X1 3PS, UK

Affiliations

  1. Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB23EJ, UK

    • Charles P. Ellington
    • , Coen van den Berg
    • , Alexander P. Willmott
    •  & Adrian L. R. Thomas

Authors

  1. Search for Charles P. Ellington in:

  2. Search for Coen van den Berg in:

  3. Search for Alexander P. Willmott in:

  4. Search for Adrian L. R. Thomas in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/384626a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.