Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leading-edge vortices in insect flight

Abstract

INSECTS cannot fly, according to the conventional laws of aerodynamics: during flapping flight, their wings produce more lift than during steady motion at the same velocities and angles of attack1–5. Measured instantaneous lift forces also show qualitative and quantitative disagreement with the forces predicted by conventional aerodynamic theories6–9. The importance of high-life aerodynamic mechanisms is now widely recognized but, except for the specialized fling mechanism used by some insect species1,10–13, the source of extra lift remains unknown. We have now visualized the airflow around the wings of the hawkmoth Manduca sexta and a 'hovering' large mechanical model—the flapper. An intense leading-edge vortex was found on the down-stroke, of sufficient strength to explain the high-lift forces. The vortex is created by dynamic stall, and not by the rotational lift mechanisms that have been postulated for insect flight14–16. The vortex spirals out towards the wingtip with a spanwise velocity comparable to the flapping velocity. The three-dimensional flow is similar to the conical leading-edge vortex found on delta wings, with the spanwise flow stabilizing the vortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weis-Fogh, T. J. Exp. Biol. 59, 169–230 (1973).

    Google Scholar 

  2. Ellington, C. P. Phil. Trans. R. Soc. Lond. B 305, 145–181 (1984).

    Article  ADS  Google Scholar 

  3. Ennos, A. R. J. Exp. Biol. 142, 49–85 (1989).

    Google Scholar 

  4. Dudley, R. & Ellington, C. P. J. Exp. Biol. 148, 53–88 (1990).

    Google Scholar 

  5. Dudley, R. J. Exp. Biol. 198, 1065–1070 (1995).

    CAS  PubMed  Google Scholar 

  6. Cloupeau, M., Devillers, J. F. & Devezeaux, D. J. Exp. Biol. 80, 1–15 (1979).

    Google Scholar 

  7. Wilkin, P. J. J. Kansas Entomol. Soc. 63, 316–328 (1990).

    Google Scholar 

  8. Zanker, J. M. & Götz, K. G. Phil. Trans. R. Soc. Lond. B 327, 19–44 (1990).

    Article  ADS  Google Scholar 

  9. Wilkin, P. J. & Williams, M. H. Physiol. Zool. 66, 1015–1044 (1993).

    Article  Google Scholar 

  10. Maxworthy, T. J. Fluid Mech. 93, 47–63 (1979).

    Article  ADS  Google Scholar 

  11. Edwards, R. H. & Cheng, H. K. J. Fluid Mech. 120, 463–473 (1982).

    Article  ADS  Google Scholar 

  12. Spedding, G. R. & Maxworthy, T. J. Fluid Mech. 165, 247–272 (1986).

    Article  ADS  Google Scholar 

  13. Sunada, S., Kawachi, K., Watanabe, I. & Azuma, A. J. exp. Biol. 183, 217–248 (1993).

    Google Scholar 

  14. Nachtigall, W. J. Comp. Physiol. 133, 351–355 (1979).

    Article  Google Scholar 

  15. Ellington, C. P. Phil. Trans. R. Soc. Lond. B 305, 79–113 (1984).

    Article  ADS  Google Scholar 

  16. Ellington, C. P. in Biological Fluid Dynamics (eds Ellington, C. P. & Pedley, T. J.) Symp. Soc. Exp. Biol. 49, 109–129 (1995).

    Google Scholar 

  17. Brodsky, A. K. & Ivanov, V. D. Zool. Zhum. 63, 197–208 (1984).

    Google Scholar 

  18. Brodsky, A. K. & Grodnitsky, D. L. Ent. Obozr. 64, 484–492 (1985).

    Google Scholar 

  19. Brodsky, A. K. J. Exp. Biol. 161, 77–95 (1991).

    Google Scholar 

  20. Grodnitsky, D. L. & Morozov, P. P. J. Exp. Biol. 169, 143–163 (1992).

    Google Scholar 

  21. Grodnitsky, D. L. & Morozov, P. P. J. Exp. Biol. 182, 11–40 (1993).

    Google Scholar 

  22. Brodsky, A. K. The Evolution of Insect Flight (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  23. Willmott, A. P., Ellington, C. P. & Thomas, A. L. R. Phil. Trans. R. Soc. Lond. B (in the press).

  24. Dickinson, M. H. & Götz, K. G. J. Exp. Biol. 174, 45–64 (1993).

    Google Scholar 

  25. Dickinson, M. H. J. Exp. Biol. 192, 179–206 (1994).

    CAS  PubMed  Google Scholar 

  26. Van den Berg, C. & Ellington, C. P. Phil. Trans. R. Soc. Lond. B (in the press).

  27. Van den Berg, C. & Ellington, C. P. Phil. Trans. R. Soc. Lond. B (in the press).

  28. Wu, J. Z., Vakili, A. D. & Wu, J. M. Prog. Aerospace Sci. 28, 73–131 (1991).

    Article  ADS  Google Scholar 

  29. De Vries, O. Annu. Rev. Fluid Mech. 15, 77–96 (1983).

    Article  ADS  Google Scholar 

  30. Harris, F. D. J. Am. Helicopter Soc. 11, 1–21 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellington, C., van den Berg, C., Willmott, A. et al. Leading-edge vortices in insect flight. Nature 384, 626–630 (1996). https://doi.org/10.1038/384626a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384626a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing