Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras

Abstract

RAS-RELATED GTP-binding proteins function as molecular switches which cycle between GTP-bound 'on'- and GDP-bound 'off'-states1. GTP hydrolysis is the common timing mechanism that mediates the return from the 'on' to the 'off'-state. It is usually slow but can be accelerated by orders of magnitude upon inter-action with GTPase-activating proteins (GAPs). In the case of Ras, a major regulator of cellular growth, point mutations are found in approximately 30% of human tumours which render the protein unable to hydrolyse GTP, even in the presence of Ras-GAPs. The first structure determination of a GTPase-activating protein reveals the catalytically active fragment of the Ras-specific p120GAP (ref. 2), GAP-334, as an elongated, exclusively helical protein which appears to represent a novel protein fold. The molecule consists of two domains, one of which contains all the residues conserved among different GAPs for Ras. From the location of conserved residues around a shallow groove in the central domain we can identify the site of interaction with Ras·GTP. This leads to a model for the interaction between Ras and GAP that satisfies numerous biochemical and genetic data on this important regulatory process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Trahey, M. & McCormick, F. Science 238, 542–545 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ahmadian, M. R., Wiesmüller, L., Lautwein, A., Bischoff, F. R. & Wittinghofer, A. J. Biol. Chem. 271, 16409–16415 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Vogel, U. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Trahey, M. et al. Science 242, 1697–1700 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Henkemeyer, M. et al. Nature 377, 695–701 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Xu, G. et al. Cell 62, 599–608 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. Cell 69, 275–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Scheffzek, K., Lautwein, A., Scherer, A., Franken, S. & Wittinghofer, A. Proteins Struct. Func. Genet. (in the press).

  10. Coleman, D. E. et al. Science 265, 1405–1412 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Nature 372, 276–279 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Markby, D. W., Onrust, R. & Bourne, H. R. Science 262, 1895–1901 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Science 273, 115–117 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Miao, W., Eichelberger, L., Baker, L. & Marshall, M. S. J. Biol. Chem. 271, 15322–15329 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Gutmann, D. H. et al. Oncogene 8, 761–769 (1993).

    CAS  PubMed  Google Scholar 

  16. Nishi, T. et al. Oncogene 6, 1555–1559 (1991).

    CAS  PubMed  Google Scholar 

  17. Rey, I., Taylor-Haris, P., van Erp, H. & Hall, A. Oncogene 9, 685–692 (1994).

    CAS  PubMed  Google Scholar 

  18. Hettich, L. & Marshall, M. Cancer Res. 54, 5438–5444 (1994).

    CAS  PubMed  Google Scholar 

  19. Brownbridge, G. G., Lowe, P. N., Moore, K. J. M., Skinners, R. H. & Webb, M. R. J. Biol. Chem. 268, 10914–10919 (1993).

    CAS  PubMed  Google Scholar 

  20. Morcos, P., Thapar, N., Tusneem, N., Stacey, D. & Tamanoi, F. Mol. Cell. Biol. 16, 2496–2503 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poullet, P., Lin, B., Esson, K. & Tamanoi, F. Mol. Cell. Biol. 14, 815–821 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiesmüller, L. & Wittinghofer, A. J. Biol. Chem. 267, 10207–10210 (1992).

    PubMed  Google Scholar 

  23. Parrini, M. C., Bernardi, A. & Parmeggiani, A. EMBO J. 15, 1107–1111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoder-Hill, J., Golubic, M. & Stacey, D. W. J. Biol. Chem. 270, 27615–27621 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Rubinfeld, B. et al. Int. J. Pept. Protein Res. 38, 47–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Pai, E. F. et al. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mori, S. et al. J. Biol. Chem. 270, 28834–28838 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Nassar, N. et al. Nature 375, 554–560 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Moore, K. J. M., Webb, M. R. & Eccleston, J. F. Biochemistry 32, 7451–7459 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Rensland, H., Lautwein, A., Wittinghofer, A. & Goody, R. S. Biochemistry 30, 11181–11185 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  32. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjelgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Brünger, T. A. XPLOR version 3.1 (Yale University, 1992).

    Google Scholar 

  34. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Kraulis, P. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffzek, K., Lautwein, A., Kabsch, W. et al. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384, 591–596 (1996). https://doi.org/10.1038/384591a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384591a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing