Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational constraints on the internal structure of Ganymede

Abstract

BEFORE the arrival of the Galileo spacecraft in the jovian system, there was little information on the interior structure of Jupiter's largest moon, Ganymede. Its mean density (1,940 kg m−3), determined by the Pioneer and Voyager spacecraft1–3, implies a composition that is roughly 60% rock and 40% ice, which could be uniformly mixed or differentiated into a rocky core and icy mantle4. Here we report measurements by the Galileo spacecraft of Ganymede's overall density and the spherical harmonics, J2 and C22, of its gravitational field. These data show clearly that Ganymede has differentiated into a core and mantle. Combined with the recent discovery of an intrinsic magnetic field5,6, our gravity results suggest that Ganymede has a metallic core of radius 400–1,300 km surrounded by a silicate mantle, which is in turn enclosed by an ice shell 800 km thick. Depending on whether the core is pure iron or an alloy of iron and iron sulphide, it could account for as little as 1.4% or as much as one-third of the total mass. If the ice were stripped away, Ganymede could look much like Io7 in terms of its size and internal mass distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Null, G. W., Anderson, J. D. & Wong, S. K. Science 12, 476–477 (1975).

    Article  ADS  Google Scholar 

  2. Null, G. W. Astron. J. 81, 1153–1161 (1976).

    Article  ADS  Google Scholar 

  3. Campbell, J. K. & Synnott, S. P. Astron. J. 90, 364–372 (1985).

    Article  ADS  Google Scholar 

  4. Schubert, G., Spohn, T. & Reynolds, R. T. in Satellites (eds Burns, J. A. & Matthews, M. S.) 629–688 (Univ. Arizona Press, Tucson, 1986).

    Google Scholar 

  5. Kivelson, M. G. et al. Nature 384, 537–541 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Gurnett, D. A., Kurth, W. S., Roux, A., Bolton, S. J. & Kennel, C. F. Nature 384, 535–537 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Anderson, J. D., Sjogren, W. L. & Schubert, G. Science 272, 709–712 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Moyer, T. D. Tech. Rep. No. RT32-1527 (Jet Propulsion Lab., Pasadena, 1971).

  9. Anderson, J. D., in Experimental Gravitation (ed. Bertotti, B.) 163–1299 (Academic, New York, 1974).

    Google Scholar 

  10. Tapley, B. D. in Recent Advances in Dynamical Astronomy (eds Taply, B. D. & Szebehely, V.) 396–425 (Reidel, Dordrecht, 1973).

    Google Scholar 

  11. Kaula, W. M. Theory of Satellite Geodesy (Blaisdell, Waltham, MA, 1966).

    MATH  Google Scholar 

  12. Cohen, E. R. & Taylor, B. N. Phys. Today 49, BG9–BG13 (1996).

    Article  Google Scholar 

  13. Davies, M. E. et al. Celest. Mech. Dyn. Astron. 53, 377–397 (1992).

    Article  ADS  Google Scholar 

  14. Woo, R. & Armstrong, J. W. J. Geophys. Res. 84, 7288–7296 (1979).

    Article  ADS  Google Scholar 

  15. Kaula, W. M. An Introduction to Planetary Physics: The Terrestrial Planets (Wiley, New York, 1968).

    Google Scholar 

  16. Hubbard, W. B. & Anderson, J. D. Icarus 33, 336–341 (1978).

    Article  ADS  Google Scholar 

  17. Dermott, S. F. Icarus 37, 310–321 (1979).

    Article  ADS  Google Scholar 

  18. Zharkov, V. N., Leontjev, V. V. & Kozenko, A. V. Icarus 61, 92–100 (1985).

    Article  ADS  Google Scholar 

  19. Schubert, G., Limonadi, D., Anderson, J. D., Campbell, J. K. & Giampieri, G. Icarus 111, 433–440 (1994).

    Article  ADS  Google Scholar 

  20. Jeffreys, H. The Earth (Cambridge Univ. Press, 1962).

    MATH  Google Scholar 

  21. Schubert, G., Zhang, K., Kivelson, M. G. & Anderson, J. D. Nature 384, 544–545 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Malhotra, R. Icarus 94, 399–412 (1991).

    Article  ADS  Google Scholar 

  23. Segatz, M., Spohn, T., Ross, M. N. & Schubert, G. Icarus 75, 187–206 (1988).

    Article  ADS  Google Scholar 

  24. Peale, S. J., Cassen, P. & Reynolds, R. T. Science 203, 892–894 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J., Lau, E., Sjogren, W. et al. Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996). https://doi.org/10.1038/384541a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384541a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing