Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a DExx box DNA helicase

Abstract

THERE are a wide variety of helicases that unwind helical DNA1 and RNA substrates2. The twelve helicases that have been identified in Escherichia coli1 play a role in almost all cellular processes involving nucleic acids. We have solved the crystal structure of a monomeric form of a DNA helicase from Bacillus stearothermo-philus, alone and in a complex with ADP, at 2.5 and 2.9 Å resolution, respectively. The enzyme comprises two domains with a deep cleft running between them. The ATP-binding site, which is situated at the bottom of this cleft, is formed by motifs that are conserved across the superfamily of related helicases. Unexpected structural homo logy with the DNA recombination protein, RecA, suggests how ATP binding and hydrolysis may drive conformational changes of the enzyme during catalysis, and implies that there is a common mechanism for all helicases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lohman, T. M. & Bjornson, K. P. Annu. Rev. Biochem. 65, 169–214 (1996).

    Article  CAS  Google Scholar 

  2. Schmid, S. R. & Linder, P. Mol. Microbiol. 6, 283–292 (1992).

    Article  CAS  Google Scholar 

  3. Egelman, E. H. Structure 4, 759–762 (1996).

    Article  CAS  Google Scholar 

  4. Chao, K. & Lohman, T. M. J. Mol. Biol. 221, 1165–1181 (1991).

    Article  CAS  Google Scholar 

  5. Runyon, G. T., Wong, I. & Lohman, T. M. Biochemistry 32, 602–612 (1993).

    Article  CAS  Google Scholar 

  6. Schaeffer, L. et al. Science 260, 58–63 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Iordanescu, S. Mol. Gen. Genet. 241, 185–192 (1993).

    Article  CAS  Google Scholar 

  8. Gorbalenya, A. E. & Koonin, E. V. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  9. Story, R. M., Weber, I. T. & Steitz, T. A. Nature 355, 318–325 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  11. Pause, A. & Sonenburg, N. EMBO J. 7, 2643–2654 (1992).

    Article  Google Scholar 

  12. Gross, C. H. & Shuman, S. J. Virol. 69, 4727–4736 (1995).

    CAS  Google Scholar 

  13. Brosh, R. M. & Matson, S. W. J. Bacteriol. 177, 5612–5621 (1995).

    Article  CAS  Google Scholar 

  14. Rozen, F. et al. Mol. Cell. Biol. 10, 1134–1144 (1990).

    Article  CAS  Google Scholar 

  15. Washburn, J. D. & Kushner, S. R. J. Bacteriol. 175, 341–350 (1993).

    Article  CAS  Google Scholar 

  16. Story, R. M. & Steitz, T. A. Nature 355, 374–376 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Wong, I. & Lohman, T. M. Science 256, 350–355 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Stasiak, A., Egelman, E. H. & Howard-Flanders, P. J. Mol. Biol. 202, 659–662 (1988).

    Article  CAS  Google Scholar 

  19. Zhu, L. & Weller, S. K. Virology 166, 366–378 (1988).

    Article  CAS  Google Scholar 

  20. Crute, J. J., Mocarski, E. S. & Lehman, I. R. Nucleic Acids Res. 16, 6585–6596 (1988).

    Article  CAS  Google Scholar 

  21. Opperman, T. & Richardson, J. P. J. Bacteriol. 176, 6033–5043 (1994).

    Google Scholar 

  22. Abrahams, J.-P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Nature 370, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Miwa, Y., Horiguchi, T. & Shigesada, K. J. Mol. Biol. 254, 815–837 (1995).

    Article  CAS  Google Scholar 

  24. Yu, X., Angov, E., Camerini-Otero, R. D. & Egelman, E. H. Biophys. J. 69, 2728–2738 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Hingorani, M. M. & Patel, S. S. Biochemistry 35, 2218–2228 (1996).

    Article  CAS  Google Scholar 

  26. Bujalowski, W. & Klonowska, M. M. Biochemistry 32, 5888–5900 (1993).

    Article  CAS  Google Scholar 

  27. Zavitz, K. H. & Marians, K. J. J. Biol. Chem. 268, 4337–4346 (1993).

    CAS  PubMed  Google Scholar 

  28. Lee, M. S. & Marians, K. J. Proc. Natl Acad. Sci. USA 84, 8345–8349 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Zavitz, K. H. & Marians, K. J. J. Biol. Chem. 267, 6933–6940 (1992).

    CAS  PubMed  Google Scholar 

  30. Brunger, A. T. Nature 355, 472–474 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanya, H., Bird, L., Brannigan, J. et al. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996). https://doi.org/10.1038/384379a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384379a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing