Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High intrinsic rate of DNA loss in Drosophila

Abstract

PSEUDOGENES are common in mammals but virtually absent in Drosophila1. All putative Drosophila pseudogenes show patterns of molecular evolution that are inconsistent with the lack of functional constraints2–5. The absence of bona fide pseudogenes is not only puzzling, it also hampers attempts to estimate rates and patterns of neutral DNA change. The estimation problem is especially acute in the case of deletions and insertions, which are likely to have large effects when they occur in functional genes and are therefore subject to strong purifying selection. We propose a solution to this problem by taking advantage of the propensity of retrotransposable elements without long terminal repeats (non-LTR) to create non-functional, 'dead-on-arrival' copies of themselves as a common by-product of their transpositional cycle6–8. Phylogenetic analysis of a non-LTR element, Helena, demonstrates that copies lose DNA at an unusually high rate, suggesting that lack of pseudogenes in Drosophila is the product of rampant deletion of DNA in unconstrained regions. This finding has important implications for the study of genome evolution in general and the 'C-value paradox'9 in particular.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Weiner, A. M., Deininger, P. L. & Efstratiadis, A. Annu. Rev. Biochem. 55, 631–661 (1986).

    Article  CAS  Google Scholar 

  2. Currie, P. D. & Sullivan, D. T. Genetics 138, 353–363 (1994).

    CAS  PubMed Central  Google Scholar 

  3. Sullivan, D. T., Starmer, W. T., Curtis, S. W., Menotti-Raymond, M. & Yum, J. Mol. Biol. Evol. 11, 443–458 (1994).

    CAS  PubMed  Google Scholar 

  4. Long, M. Y. & Langley, C. H. Science 260, 91–95 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Jeffs, P. & Ashburner, M. Proc. R. Soc. Lond. B 244, 151–159 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Finnegan, D. J. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 503–517 (Am. Soc. Microbiol., Washington DC, 1989).

    Google Scholar 

  7. Hutchison, C. A. III, Hardies, S. C., Loeb, D. D., Shehee, W. R. & Edgell, M. H. in Mobile DNA (eds Berg, D. E. & Howe, M. M.) 593–617 (Am. Soc. Microbiol., Washington DC, 1989).

    Google Scholar 

  8. Luan, D. D., Korman, M. H., Jacubczak, J. L. & Eickbush, T. H. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  9. John, B. & Miklos, G. The Eukaryote Genome in Development and Evolution (Allen & Unwin, London, 1988).

    Google Scholar 

  10. McClure, M. in Reverse Transcriptase (eds Skalka, A. M. & Goff, S. P.) (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  11. Petrov, D. A., Schutzman, J. L., Hartl, D. L. & Lozovskaya, E. R. Proc. Natl Acad. Sci. USA 92, 8050–8054 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony Version 3.0s (Illinois Natural History Survey, Champaign, 1991).

    Google Scholar 

  13. Springer, M. S., Tusneem, N. A., Davidson, E. H. & Britten, R. J. Mol. Biol. Evol. 12, 219–230 (1995).

    CAS  PubMed  Google Scholar 

  14. Eickbush, D. G., Lathe, W. C., Francino, M. P. & Eickbush, T. H. Genetics 139, 685–695 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bebenek, K. & Kunkel, T. A. in Reverse Transcriptase (eds Skalka, A. M. & Goff, S. P.) (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  16. Graur, D., Shuali, Y. & Li, W.-H. J. Mol. Evol. 28, 279–285 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Jones, C. W. & Kafatos, F. C. J. Mol. Evol. 19, 87–103 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Levinson, G. & Gutman, G. Mol. Biol. Evol. 4, 203–221 (1987).

    CAS  PubMed  Google Scholar 

  19. Sharp, P. M. & Li, W.-H. J. Mol. Evol. 28, 398–402 (1989).

    Article  ADS  CAS  Google Scholar 

  20. deSouza, S. J., Long, M. & Gilbert, W. Genes to Cells 1, 493–505 (1996).

    Article  CAS  Google Scholar 

  21. Hughes, A. L. & Hughes, M. K. Nature 377, 391 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Strathmann, M. et al. Proc. Natl Acad. Sci. USA 88, 1247–1250 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Maddison, W. P. & Maddison, D. R. MacClade Version 3 (Sinauer Associates, Sunderland, Massachusetts, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrov, D., Lozovskaya, E. & Hartl, D. High intrinsic rate of DNA loss in Drosophila. Nature 384, 346–349 (1996). https://doi.org/10.1038/384346a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384346a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing