Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detection of H+3 in interstellar space

Abstract

THE H+3 ion is widely believed to play an important role in interstellar chemistry, by initiating the chains of reactions that lead to the production of many of the complex molecular species observed in the interstellar medium1–5. The presence of H+3 in the interstellar medium was first suggested6 in 1961, and its infrared spectrum was measured7 in the laboratory in 1980. But attempts8–11 to detect it in interstellar space have hitherto proved unsuccessful. Here we report the detection of H+3 absorption in the spectra of two molecular clouds. Although the present results do not permit an accurate determination of the H+3 abundances, these ions appear nevertheless to be present in sufficient quantities to drive much of the chemistry in molecular clouds. It should soon be possible to obtain more accurate measurements, and thus better quantify the role of ion–neutral reactions in the chemical evolution of molecular clouds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Herbst, E. & Klemperer, W. Astrophys. J. 185, 505–534 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Watson, W. D. Astrophys. J. 183, L17–L20 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Watson, W. D. Rev Mod. Phys. 48, 513–552 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Dalgamo, A. & Black, J. H. Rep. Prog. Phys. 39, 573–612 (1976).

    Article  ADS  Google Scholar 

  5. Suzuki, H. Prog. Theor. Phys. 62, 936–956 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Martin, D. W., McDaniel, E. W. & Meeks, M. L. Astrophys. J. 134, 1012–1013 (1961).

    Article  ADS  CAS  Google Scholar 

  7. Oka, T. Phys. Rev. Lett. 45, 531–534 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Oka, T. Phil. Trans. R. Soc. Lond. A 303, 543–549 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Geballe, T. R. & Oka, T. Astrophys. J. 342, 855–859 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Black, J. H., van Dishoeck, E. F., Willner, S. P. & Woods, R. C. Astrophys. J. 358, 459–467 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Maillard, J.-P. Spectrochim. Acta 51A, 1105–1115 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Drossart, P. et al. Nature 340, 539–541 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Trafton, L. M., Geballe, T. R., Miller, S., Tennyson, J. & Ballester, G. E. Astrophys. J. 405, 761–766 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Geballe, T. R., Jagod, M.-F. & Oka, T. Astrophys. J. 408, L109–LL12 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Miller, S., Tennyson, J., Lepp, S. & Dalgamo, A. Nature 355, 420–421 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Miller, S., Lam, H. A. & Tennyson, J. Can. J. Phys. 72, 760–771 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Schutte, W. A., Gerakines, P. A., Geballe, T. R., van Dishoeck, E. F. & Greenberg, J. M. Astron. Astrophys. 309, 633–647 (1996).

    ADS  CAS  Google Scholar 

  18. Geballe, T. R., Baas, F., Greenberg, J. M. & Schutte, W. Astron. Astrophys. 146, L6–L8 (1985).

    ADS  CAS  Google Scholar 

  19. Mitchell, G. F., Maillard, J.-P., Allen, M., Beer, R. & Belcourt, K. Astrophys. J. 363, 554–573 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Tielens, A. G. G. M., Tokunaga, A. T., Geballe, T. R. & Baas, F. Astrophys. J. 381, 181–199 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Lee, H.-H., Bettens, R. P. A. & Herbst, E. Astron. Astrophys. Suppl. Ser. 119, 111–114 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Lepp, S., Dalgamo, A. & Stemberg, A. Astrophys. J. 321, 383–385 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Anicich, V. G. & Huntress, W. T. Jr. Astrophys. J. Suppl. Ser. 62, 553–672 (1976).

    Article  ADS  Google Scholar 

  24. Amano, T. Astrophys. J. 329, L121–L124 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Spitzer, L. & Jenkins, E. B. Annu. Rev. Astron. Astrophys. 13, 133–164 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geballe, T., Oka, T. Detection of H+3 in interstellar space. Nature 384, 334–335 (1996). https://doi.org/10.1038/384334a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384334a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing