Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermally stable nonlinear optical activity in a smectic-A liquid crystal

Abstract

THE key requirement for a material to exhibit nonlinear optical (NLO) activity is the presence of non-centrosymmetric (polar) order, an attribute that is usually restricted to certain crystalline classes and ferroelectric liquid crystals1,2. NLO activity can also be obtained in some amorphous organic materials by applying an intense electric field (corona discharge) above the glass transition temperature, Tg, and subsequently quenching the field-induced polar orientation order3,4. Such materials are attractive for NLO device applications, as they promise lower costs and easier processibility than their crystalline organic and inorganic counterparts5. But field-induced polar order is not stable, and the eventual return to equilibrium (apolar) order results in a deterioration of NLO activity, particularly at temperatures near Tg (refs 6, 7). Here we show that this thermally activated decay of polar order can be circumvented by using a liquid crystal in which both mesogens (molecules that induce a liquid-crystal phase) and NLO-active chromophores are appended to macromolecular siloxane rings. We find that a shear-aligned melt of these composite macromolecules gives rise to a material with a monodomain lamellar superstructure that retains bistable, field-induced polar order above Tg. We attribute the thermal stability of these materials to an energetically favoured polar packing arrangement of the constituent macro-molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chemla, D. S. & Zyss, J. (eds) Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, 1987).

  2. Schmidt, K. et al. Liq. Cryst. 14, 1735–1752 (1993).

    Article  Google Scholar 

  3. Singer, K. D., Sohn, J. E. & Lalama, S. J. Appl. Phys. Lett. 49, 248–250 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Wu, J. et al. Appl. Phys. Lett. 58, 225–227 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Marder, S. R. & Perry, J. W. Science 263, 1706–1707 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Burland, D. M., Miller, R. D. & Walsh, C. A. Chem. Rev. 94, 31 (1994).

    Article  CAS  Google Scholar 

  7. Verbiest, T. et al. Science 268, 1604–1608 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Walba, D. M. et al. Mol. Cryst. Liq. Cryst. 198, 51–60 (1991).

    Article  CAS  Google Scholar 

  9. Benne, I., Semmler, K. & Finkelmann, H. Macromol. Rapid Commun. 15, 295–302 (1994).

    Article  CAS  Google Scholar 

  10. Spes, P., Hessling, M. & Kreuzer, F.-H. US Patent No. 5231206 (1993).

  11. Bunning, T. J., Klei, H. E., Samulski, E. T., Crane, R. L., Linville, R. J. Liq. Cryst; 10, 445–456 (1991).

    Article  CAS  Google Scholar 

  12. Bunning, T. J., Klei, H. E., Samulski, E. T., Adams, W. W. & Crane, R. L. Mol. Cryst. Liq. Cryst. 231, 163 (1993).

    Article  CAS  Google Scholar 

  13. Cull, B., Shi, Y., Kumar, S., Shih, R. & Mann, J. Phys. Rev. E 51, 526–535 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Wang, H., Jamagin, R. C. & Samulski, E. T. Macromolecules 27, 4705–4713 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Marder, S. R. et al. Science 263, 511–514 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Lindsay, G. A., Henry, R. A., Hoover, J. M., Knoesen, A. & Mortazavi, M. A. Macromolecules 25, 4888–4894 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Man, H. T. & Yoon, H. N. Adv. Mater. 4, 159–168 (1992).

    Article  CAS  Google Scholar 

  18. Singer, K. D. & King, L. A. J. Appl. Phys. 70, 3251–3255 (1991).

    Article  ADS  Google Scholar 

  19. Xu, B. & Swager, T. M. J. Am. Chem. Soc. 115, 1159–1160 (1993).

    Article  CAS  Google Scholar 

  20. Petschek, R. G. & Wiefling, K. M. Phys. Rev. Lett. 59, 343–346 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Perchak, D. R. & Petschek, R. G. Phys. Rev. A 43, 6756–6770 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Tournilhac, F. & Simon, J. Ferroelectrics 114, 283–287 (1991).

    Article  CAS  Google Scholar 

  23. Tam, W., Guerin, B., Calbrese, J. C. & Stevenso, S. H. Chem. Phys. Lett. 154, 93–96 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Bierlein, J. D., Cheng, L. K., Wang, Y. & Tarn, W. Appl. Phys. Lett. 56, 423–425 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Bunning, T. J. thesis, Univ. Connecticut (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Jin, M., Jarnagin, R. et al. Thermally stable nonlinear optical activity in a smectic-A liquid crystal. Nature 384, 244–247 (1996). https://doi.org/10.1038/384244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing