Abstract
The developmental and genetic bases for the formation, plasticity and diversity of eyespot patterns in butterflies are examined. Eyespot pattern mutants, regulatory gene expression, and transplants of the eyespot developmental organizer demonstrate that eyespot position, number, size and colour are determined progressively in a developmental pathway largely uncoupled from those regulating other wing-pattern elements and body structures. Species comparisons and selection experiments suggest that the evolution of eyespot patterns can occur rapidly through modulation of different stages of this pathway, and requires only single, or very few, changes in regulatory genes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A CYC–RAD–DIV–DRIF interaction likely pre-dates the origin of floral monosymmetry in Lamiales
EvoDevo Open Access 29 January 2022
-
Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies
EvoDevo Open Access 27 May 2020
-
Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation
BMC Developmental Biology Open Access 31 March 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Cott, H. B. Adaptive Coloration in Animals (Methuen, London, 1940).
Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, 1986).
Nijhout, H. F. The Development and Evolution of Butterfly Wing Patterns (Smithsonian Inst. Press, Washington, 1991).
Brakefield, P. M. & Larsen, T. B. Biol. J. Linn. Soc. 22, 1–12 (1984).
Brakefield, P. M. & Reitsma, N. Ecol. Entomol. 16, 291–303 (1991).
Shapiro, A. M. Evol. Biol. 9, 259–333 (1976).
Kingsolver, J. G. Evolution 49, 932–941 (1995).
Kingsolver, J. G. Evolution 49, 942–954 (1995).
Rountree, D. B. & Nijhout, H. F. J. Insect Physiol. 41, 987–992 (1995).
Rountree, D. B. & Nijhout, H. F. J. Insect Physiol. 41, 1141–1145 (1995).
Stearns, S. C. Bioscience 39, 436–445 (1989).
Via, S. et al. Trends Ecol. Evol. 10, 212–217 (1995).
Schlichting, C. D. & Pigliucci, M. Evol. Ecol. 9, 154–168 (1995).
Pigliucci, M. Trends Ecol. Evol. 11, 168–173 (1996).
Nijhout, H. F. Dev. Biol. 80, 276–274 (1980).
French, V. & Brakefield, P. M. Dev. Biol. 168, 112–123 (1995).
Carroll, S. B. et al. Sciences 265, 109–114 (1994).
Brakefield, P. M. & French, V. Acta Biotheor. 41, 447–468 (1993).
Windig, J. J., Brakefield, P. M., Reitsma, N. & Wilson, J. G. M. Ecol. Entomol. 19, 285–298 (1994).
Brakefield, P. M. & Mazzotta, V. J. Evol. Biol. 8, 559–573 (1995).
van Noordwijk, A. J. Bioscience 39, 453–458 (1989).
Kooi, R. E., Brakefield, P. M. & Schlatman, E. G. M. Proc. Exp. Appl. Entomol. 5, 47–52 (1994).
Holloway, G. J., Brakefield, P. M. & Kofman, S. Heredity 70, 179–186 (1992).
Monteiro, A. F., Brakefield, P. M. & French, V. Evolution 48, 1147–1157 (1994).
Wright, S. Evolution and the Genetics of Populations Vol. 1, Genetics and Biometrical Foundations (Univ. Chicago Press, 1968).
Lande, R. Genetics 99, 541–553 (1981).
Cockerham, C. C. Genetics 114, 659–664 (1986).
Zeng, Z.-B., Houle, D. & Cockerham, C. C. Genetics 126, 235–247 (1990).
Koch, P. B., Brakefield, P. M. & Kesbeke, F. J. Insect Physiol. 42, 223–230 (1996).
Nijhout, H. F. Insect Hormones (Princeton Univ. Press, 1994).
Zweifel, R. G. J. Heredity 72, 238–244 (1981).
King, R. B. Can. J. Zool. 71, 1985–1990 (1981).
Sheppard, P. M. Natural Selection and Heredity (Harper, New York, 1960).
Endler, J. A. Evol. Biol. 11, 319–364 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brakefield, P., Gates, J., Keys, D. et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature 384, 236–242 (1996). https://doi.org/10.1038/384236a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/384236a0
This article is cited by
-
A CYC–RAD–DIV–DRIF interaction likely pre-dates the origin of floral monosymmetry in Lamiales
EvoDevo (2022)
-
Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies
EvoDevo (2020)
-
Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation
BMC Developmental Biology (2020)
-
Conservation and flexibility in the gene regulatory landscape of heliconiine butterfly wings
EvoDevo (2019)
-
Developmental dynamics of butterfly wings: real-time in vivo whole-wing imaging of twelve butterfly species
Scientific Reports (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.