Letter | Published:

Timing of neurotransmission at fast synapses in the mammalian brain

Naturevolume 384pages170172 (1996) | Download Citation

Subjects

Abstract

UNDERSTANDING the factors controlling synaptic delays has broad implications. On a systems level, the speed of synaptic transmission limits the communication rate between neurons and strongly influences local circuit dynamics1,2. On a molecular level, the delay from presynaptic calcium entry to postsynaptic responses constrains the molecular mechanism of vesicle fusion3. Previously it has not been possible to elucidate the determinants of synaptic delays in the mammalian central nervous system, where presynaptic terminals are small and difficult to study. We have developed a new approach to study timing at rat cerebellar synapses: we used optical techniques to measure voltage and calcium current simultaneously from presynaptic boutons while monitoring postsynaptic currents electrically4–6. Here we report that the classic view that vesicle release is driven by calcium entry during action-potential repolarization7 holds for these synapses at room temperature, but not at physiological temperatures, where postsynaptic responses commence just 150 μs after the start of the presynaptic action potential. This brisk communication is a consequence of rapid calcium-channel kinetics, which allow significant calcium entry during the upstroke of the presynaptic action potential, and extremely fast calcium-driven vesicle fusion, which lags behind calcium influx by 60 μs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hopfield, J. J. Nature 376, 33–36 (1995).

  2. 2

    Stratford, K. J., Tarczy-Hornoch, K., Martin, K. A. C., Bannister, N. J. & Jack, J. J. B. Nature 382, 258–261 (1996).

  3. 3

    Schweizer, F. E., Betz, H. & Augustine, G. J. Neuron 14, 689–696 (1995).

  4. 4

    Regehr, W. G. & Tank, D. W. J. Neurosci. Meth. 37, 111–119 (1991).

  5. 5

    Regehr, W. G. & Atluri, P. P. Biophys. J. 68, 2156–2170 (1995).

  6. 6

    Sabatini, B. L. & Regehr, W. G. Neuropharmacology 34, 1453–1467 (1995).

  7. 7

    Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science (Elsevier, New York, 1991).

  8. 8

    Llinas, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

  9. 9

    Llinas, R., Sugimori, M. & Simon, S. M. Proc. Natl Acad. Sci. USA 79, 2415–2419 (1982).

  10. 10

    Augustine, G. J., Charlton, M. P. & Smith, S. J. J. Physiol. (Lond.) 369, 163–181 (1985).

  11. 11

    Appenteng, K., Conyers, L. & Moore, J. A. J. Physiol. (Lond.) 417, 91–104 (1989).

  12. 12

    Oertel, D. J. Neurosci. 3, 2043–2053 (1983).

  13. 13

    Barbour, B., Keller, B. U., Llano, I. & Marty, A. Neuron 12, 1331–1343 (1994).

  14. 14

    Palay, S. L. & Chan-Palay, V. Cerebellar Cortex (Springer, New York, 1974).

  15. 15

    Neher, E. Neuropharmacology 34, 1423–1442 (1995).

  16. 16

    Kao, J. P. Y. & Tsien, R. Y. Biophys. J. 53, 635–639 (1988).

  17. 17

    Delbono, O. & Stefani, E. J. Physiol. (Lond.) 463, 689–707 (1993).

  18. 18

    Zhao, M., Hollingworth, S. & Baylor, S. M. Biophys. J. 70, 896–916 (1996).

  19. 19

    Wheeler, D. B., Randall, A. & Tsien, R. W. J. Neurosci. 16, 2226–2237 (1996).

  20. 20

    Pfrieger, F. W., Veselovsky, N. S., Gottmann, K. & Lux, H. D. J. Neurosci. 12, 4347–4357 (1992).

  21. 21

    Atluri, P. P. & Regehr, W. G. J. Neurosci. 16, 5661–5671 (1996).

  22. 22

    Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. Biol. Chem. 260, 3440–3450 (1985).

  23. 23

    Nobile, M., Carbone, E., Lux, H. D. & Zucker, H. Pflugers Arch. 415, 658–663 (1990).

  24. 24

    Taylor, W. R. J. Physiol. (Lond.) 407, 405–432 (1988).

  25. 25

    McAllister-Williams, R. H. & Kelly, J. S. Neuropharmacology 34, 1479–1490 (1995).

  26. 26

    Hodgkin, A. L. & Katz, B. J. Physiol. (Lond.) 109, 240–249 (1949).

  27. 27

    Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Nature 371, 513–515 (1994).

  28. 28

    Konnerth, A., Obaid, A. L. & Salzberg, B. M. J. Physiol. (Lond.) 393, 681–702 (1987).

  29. 29

    Loew, L M., Cohen, L. B., Salzberg, B. M., Obaid, A. L. & Bezanilla, F. Biophys. J. 47, 71–77 (1985).

  30. 30

    Kocsis, J. D., Malenka, R. C. & Waxman, S. G. J. Physioi. (Lond.) 334, 225–244 (1983).

Download references

Author information

Affiliations

  1. Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts, 02115, USA

    • Bernardo L. Sabatini
    •  & Wade G. Regehr

Authors

  1. Search for Bernardo L. Sabatini in:

  2. Search for Wade G. Regehr in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/384170a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.