Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotubes as nanoprobes in scanning probe microscopy


SINCE the invention of the scanning tunnelling microscope1, the value of establishing a physical connection between the macroscopic world and individual nanometre-scale objects has become increasingly evident, both for probing these objects2–4 and for direct manipulation5–7 and fabrication8–10 at the nanometre scale. While good progress has been made in controlling the position of the macroscopic probe of such devices to sub-ångström accuracy, and in designing sensitive detection schemes, less has been done to improve the probe tip itself4. Ideally the tip should be as precisely defined as the object under investigation, and should maintain its integrity after repeated use not only in high vacuum but also in air and water. The best tips currently used for scanning probe microscopy do sometimes achieve sub-nanometre resolution, but they seldom survive a 'tip crash' with the surface, and it is rarely clear what the atomic configuration of the tip is during imaging. Here we show that carbon nanotubes11,12 might constitute well defined tips for scanning probe microscopy. We have attached individual nanotubes several micrometres in length to the silicon cantilevers of conventional atomic force microscopes. Because of their flexibility, the tips are resistant to damage from tip crashes, while their slenderness permits imaging of sharp recesses in surface topography. We have also been able to exploit the electrical conductivity of nanotubes by using them for scanning tunnelling microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Binnig, G. Rohrer, H., Gerber, C. & Weibel, E. Phys. Rev. Lett. 50, 120–123 (1983).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Quate, C. F. Surf. Sci. 299/300, 980–995 (1994).

    ADS  Article  Google Scholar 

  3. 3

    Rugar, D. & Hansma, P. Phys. Today 43(10), 23 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Bustamante, C. & Keller, D. Phys. Today 48(12), 32–38 (1995).

    ADS  Article  Google Scholar 

  5. 5

    Crommie, M. F., Lutz, C. P. & Eigler, D. M. Science 262, 218–220 (1993).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Avouris, P. Acc. Chem. Res. 27, 159–165 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Lieber, C. M., Liu, J. & Sheehan, P. E. Angew. Chem. Int. Edn Engl. 35, 687–704 (1996).

    CAS  Google Scholar 

  8. 8

    Dagata, J. A. Science 270, 1625–1626 (1995).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Minne, S. C., Flueckiger, P., Soh, H. T. & Quate, C. F. J. Vac. Sci. Technol. B 13(3), 1380–1384 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Shen, T.-C. et al. Science 268, 1590–1592 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    lijima, S. Nature 354, 56–58 (1991).

    ADS  Article  Google Scholar 

  12. 12

    Ebbesen, T. W. Physics Today 49(6), 26–32 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Colbert, D. T. et al. Science 266, 1218–1222 (1994).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Yakobson, B. I., Brabec, C. J. & Bernholc, J. Phys. Rev. Lett. 76, 2511–2514 (1996).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Spatz, J. P. et al. Nanotechnology 6, 39–44 (1995).

    ADS  Article  Google Scholar 

  16. 16

    Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R. & Quate, C. F. Appl. Phys. Lett. 54, 2651–2653 (1989).

    ADS  Article  Google Scholar 

  17. 17

    Hansma, H. G., Laney, D. E., Bezanilla, M., Sinsheimer, R. L. & Hansma, P. K. Biophys. J. 68, 1672–1677 (1995).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Putman, C. A. J., van der Werf, K. O., de Grooth, B. G., van Hulst, N. F. & Greve, J. Biophys. J. 67, 1749–1753 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dai, H., Wong, E. E. & Lieber, C. M. Science 272, 523–526 (1996).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ebbesen, T. W. et al. Nature 382, 54–56 (1996).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Bard, A. J., Denuault, G., Lee, C., Mandler, D. & Wipf, D. O. Acc. Chem. Res. 23, 357–363 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Husser, O. E., Craston, D. H. & Bard, A. J. J. Electrochem. Soc. 136, 3222–3229 (1989).

    CAS  Article  Google Scholar 

  23. 23

    Dai, H. & Lieber, C. M. Annu. Rev. Phys. Chem. 44, 237–263 (1993).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Thess, A. et al. Science 273, 483–487 (1996).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rinzler, A. G. et al. Science 269, 1550–1553 (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Nature 381, 678–680 (1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Yakobson, B. I., Brabec, C. J. & Bernholc, J. Phys. Rev. Lett. 76, 2511–2514 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dai, H., Hafner, J., Rinzler, A. et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing