Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA

Abstract

ANY uracil bases in DNA, a result of either misincorporation or deamination of cytosine, are removed by uracil-DNA glycosylase (UDG), one of the most efficient and specific of the base-excision DNA-repair enzymes1. Crystal structures of human2,3 and viral4 UDGs complexed with free uracil have indicated that the enzyme binds an extrahelical uracil. Such binding of undamaged extrahelical bases has been seen in the structures of two bacterial methyltransferases5,6 and bacteriophage T4 endonuclease V (ref. 7). Here we characterize the DNA binding and kinetics of several engineered human UDG mutants and present the crystal structure of one of these, which to our knowledge represents the first structure of any eukaryotic DNA repair enzyme in complex with its damaged, target DNA. Electrostatic orientation along the UDG active site, insertion of an amino acid (residue 272) into the DNA through the minor groove, and compression of the DNA backbone flanking the uracil all result in the flipping-out of the damaged base from the DNA major groove, allowing specific recognition of its phosphate, deoxyribose and uracil moieties. Our structure thus provides a view of a productive complex specific for cleavage of uracil from DNA and also reveals the basis for the enzyme-assisted nucleotide flipping by this critical DNA-repair enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindahl, T. Nature 362, 709–715 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Mol, C. D. et al. Cell 82, 701–708 (1995).

    Article  CAS  Google Scholar 

  3. Mol, C. D. et al. Cell 80, 869–878 (1995).

    Article  CAS  Google Scholar 

  4. Sawa, R., McAuley-Hecht, K., Brown, T. & Pearl, L. Nature 373, 487–493 (1995).

    Article  ADS  Google Scholar 

  5. Klimasauskas, S., Kumar, S., Roberts, R. J. & Cheng, X. Cell 76, 357–369 (1994).

    Article  CAS  Google Scholar 

  6. Reinisch, K. M., Chen, L., Verdine, G. L. & Lipscomb, W. N. Cell 82, 143–153 (1995).

    Article  CAS  Google Scholar 

  7. Vassylyev, D. G. et al. Cell 83, 773–782 (1995).

    Article  CAS  Google Scholar 

  8. Arnes, B. N., Shigenaga, M. K. & Hagen, T. M. Proc. Natl Acad. Sci. USA 90, 7915–7922 (1993).

    Article  ADS  Google Scholar 

  9. Mol, C. D., Kuo, C.-F., Thayer, M. M., Cunningham, R. P. & Tainer, J. A. Nature 374, 381–386 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Nelson, H. C. M. & Baker, T. H. Chem. Biol. 3, 419–423 (1996).

    Article  CAS  Google Scholar 

  11. Kavli, B. et al. EMBO J. 15, 3442–3447 (1996).

    Article  MathSciNet  CAS  Google Scholar 

  12. Sawa, R. & Pearl, L. H. Nature Struct. Biol. 2, 752–757 (1995).

    Article  Google Scholar 

  13. Slupphaug, G. et al. Biochemistry 34, 128–138 (1995).

    Article  CAS  Google Scholar 

  14. Domena, J. D., Timmer, R. T., Dicharry, S. A. & Mosbaugh, D. W. Biochemistry 27, 6742–6751 (1988).

    Article  CAS  Google Scholar 

  15. Krokan, H. & Wittwer, C. U. Nucleic Acids Res. 9, 2599–2613 (1981).

    Article  CAS  Google Scholar 

  16. Delort, A.-M. et al. Nucleic Acids Res. 13, 319–335 (1985).

    Article  CAS  Google Scholar 

  17. Varshney, U. & van de Sande, J. H. Biochemistry 30, 4055–4061 (1991).

    Article  CAS  Google Scholar 

  18. Kubareva, E. A. et al. Gene 157, 167–171 (1995).

    Article  CAS  Google Scholar 

  19. Otwinowski, Z. Proc. CCP4 Study Weekend January 29–30, 56–62 (1993).

  20. Navaza, J. Acta Cryst. A50, 157–163 (1994).

    Article  Google Scholar 

  21. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  22. Read, R. J. Acta Crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  23. McRee, D. E. J. Mol. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

  24. Engh, R. A. & Huber, R. Acta Cryst. A47, 392–400 (1991).

    Article  Google Scholar 

  25. Davis, M. E. & McCammon, J. A. Chem. Rev. 90, 509–521 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slupphaug, G., Mol, C., Kavli, B. et al. A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature 384, 87–92 (1996). https://doi.org/10.1038/384087a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384087a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing