Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Initiation of vertebrate left–right axis formation by maternal Vg1

Abstract

IN the development of the three-dimensional vertebrate body plan, the left–right axis is linked to the dorsoventral and anterioposterior axes1,2. In humans, altered left–right development results in severe cardiovascular and visceral abnormalities in individuals and in conjoined twins3,4. Although zygotically tran-scribed genes that are asymmetrically expressed have been identified5–8, the mechanism by which left–right asymmetries are established during embryogenesis is unknown9. Here we show that the Xenopus maternal gene Vg1, a member of the TGF-β family of cell-signalling molecules which are implicated in dorsoanterior development10, initiates left–right axis forma-tion. Altered expression of Vg1 on the right side of 16-cell embryos or disruption of endogenous Vg1 signalling on the left side randomizes cardiac and visceral left-right orientation and alters expression of Xnr-1, a nodal-related molecular marker for left–right development8. Furthermore, the orientation of the left–right axis in conjoined twins is dependent upon which cell-signalling molecule initiated twin formation and on whether the secondary axis is on the left or right side of the primary embryonic axis, implicating a molecular pathway leading to the formation of conjoined twins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Danos, M. C. & Yost, H. J. Development 121, 1467–1474 (1995).

    CAS  PubMed  Google Scholar 

  2. Danos, M. C. & Yost, H. J. Dev. Biol. 177, 96–103 (1996).

    Article  CAS  Google Scholar 

  3. Burn, J. in Ciba Foundation Symposium 282–296 (Wiley, New York, 1991).

    Google Scholar 

  4. Bowers, P. N., Brueckner, M. & Yost, H. J. Prog. Pediat. Cardiol. 6, 53–62 (1996).

    Article  Google Scholar 

  5. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  6. Meno, C. et al. Nature 381, 151–155 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Collignon, J., Barlet, I. & Robertson, E. J. Nature 381, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Lowe, L. A. et al. Nature 381, 158–161 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Yost, H. J. Cell 82, 689–692 (1995).

    Article  CAS  Google Scholar 

  10. Thomsen, G. H. & Melton, D. A. Cell 74, 433–441 (1993).

    Article  CAS  Google Scholar 

  11. Gerhart, J. et al. Development 107, 37–51 (1989).

    PubMed  Google Scholar 

  12. Lemaire, P., Garrett, N. & Gurdon, J. B. Cell 81, 85–94 (1995).

    Article  CAS  Google Scholar 

  13. Boterenbrood, E. C. & Nieuwkoop, P. D. Wilhelm Roux Arch. Dev. Biol. 173, 319–332 (1973).

    Article  CAS  Google Scholar 

  14. Rebagliati, M. R., Weeks, D. L., Harvey, R. P. & Melton, D. A. Cell 42, 769–777 (1985).

    Article  CAS  Google Scholar 

  15. Dale, L., Matthews, G. & Colman, A. EMBO J. 12, 4471–4480 (1993).

    Article  CAS  Google Scholar 

  16. Dohrmann, C. E., Kessler, D. S. & Melton, D. A. Dev. Biol. 175, 108–117 (1996).

    Article  CAS  Google Scholar 

  17. Yost, H. J. Nature 357, 158–161 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Kessler, D. S. & Melton, D. A. Development 121, 2155–2164 (1995).

    CAS  PubMed  Google Scholar 

  19. Hemmati-Brivanlou, A. & Thomsen, G. H. Dev. Genet. 17, 78–89 (1995).

    Article  CAS  Google Scholar 

  20. Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmatibrivanlou, A. & Melton, D. A. Development 122, 1007–1015 (1996).

    CAS  Google Scholar 

  21. Spemann, H. & Falkenberg, H. Arch. Entwicklungsmech. Organismem 45, 371–422 (1919).

    Article  Google Scholar 

  22. Tannahill, D. & Melton, D. A. Development 106, 775–785 (1989).

    CAS  PubMed  Google Scholar 

  23. Dale, L., Matthews, G., Tabe, L. & Colman, A. EMBO J. 8, 1057–1065 (1989).

    Article  CAS  Google Scholar 

  24. Ang, S. L. & Rossant, J. Cell 78, 561–574 (1994).

    Article  CAS  Google Scholar 

  25. Yisraeli, J. K. & Melton, D. A. Meth. Enzymol. 180, 42–50 (1989).

    Article  CAS  Google Scholar 

  26. Jones, C. M., Kuehn, M. R., Hogan, B., Smith, J. C. & Wright, C. V. E. Development 121, 3651–3662 (1995).

    CAS  Google Scholar 

  27. Harland, R. M. Meth. Cell Biol. 36, 685–695 (1991).

    Article  CAS  Google Scholar 

  28. Smith, W. C. & Harland, R. M. Cell 67, 753–765 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyatt, B., Lohr, J. & Yost, H. Initiation of vertebrate left–right axis formation by maternal Vg1. Nature 384, 62–65 (1996). https://doi.org/10.1038/384062a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384062a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing