Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A meiotic recombination checkpoint controlled by mitotic checkpoint genes

Abstract

IN budding yeast, meiotic recombination occurs at about 200 sites per cell and involves DNA double-strand break (DSB) intermediates1–3. Here we provide evidence that a checkpoint control requiring the mitotic DNA-damage checkpoint genes RAD17, RAD24 and MEC1 ensures that meiotic recombination is complete before the first meiotic division (MI). First, RAD17, RAD24 and MEC1 are required for the meiotic arrest caused by blocking the repair of DSBs with a mutation in the recA homologue DMC1. Second, mec1 and rad24 single mutants (DMC1+) appear to undergo MI before all recombination events are complete. Curiously, the mitosis-specific checkpoint gene RAD9 is not required for meiotic arrest of dmc1 mutants4. This shows that although mitotic and meiotic control mechanisms are related, they differ significantly. Rad17 and Rad24 proteins may contribute directly to formation of an arrest signal by association with single-strand DNA in mitosis and meiosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sun, H., Treco, D., Schultes, N. P. & Szostak, J. W. Nature 338, 87–90 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Cao, L., Alani, E. & Kleckner, N. Cell 61, 1089–1101 (1990).

    CAS  Article  Google Scholar 

  3. 3

    Wu, T.-C. & Lichten, M. Science 263, 515–518 (1994).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bishop, D. K., Park, D., Xu, L. & Kleckner, N. Cell 69, 439–456 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Sandell, L. L. & Zakian, V. A. Cell 75, 729–739 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Hartwell, L. H. & Weinert, T. A. Science 246, 629–634 (1989).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Lydall, D. & Weinert, T. Curr. Opin. Gen. Dev. 6, 4–11 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Lydall, D. & Weinert, T. Science 270, 1488–1491 (1995).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Weinert, T. A., Kiser, G. L. & Hartwell, L. H. Genes Dev. 8, 652–665 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Sanchez, Y. et al. Science 271, 357–360 (1996).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Sun, Z., Fay, D. S., Marini, F., Foiani, M. & Stern, D. F. Genes Dev. 10, 395–406 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Sym, M., Engebreacht, J. & Roeder, G. S. Cell 72, 365–378 (1993).

    CAS  Article  Google Scholar 

  13. 13

    Sym, M. & Roeder, G. S. Cell 79, 283–292 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Game, J. C., Jamb, T. J., Braun, R. J., Resnick, M. & Roth, R. M. Genetics 94, 51–68 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Malone, R. E. & Esposito, R. E. Mol. Cell. Biol. 1, 891–901 (1981).

    CAS  Article  Google Scholar 

  16. 16

    Klapholz, S., Waddell, C. S. & Esposito, R. E. Genetics 110, 187–216 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Alani, E., Padmore, R. & Kleckner, N. Cell 61, 419–436 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Schwacha, A. & Kleckner, N. Cell 76, 51–63 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Xu, L. & Kleckner, N. Genes Dev. (in the press).

  20. 20

    Shinohara, A., Ogawa, H. & Ogawa, T. Cell 69, 457–470 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Bishop, D. K. Cell 79, 1081–1092 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Hari, L. K. et al. Cell 82, 815–821 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Baker, B. & Carpenter, A. T. C. Genetics 71, 255–286 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Kato, R. & Ogawa, H. Nucleic Acids Res 22, 3104–3112 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Ogawa, T. et al. Cold Spring Harb. Symp. Quant. Biol. 58, 567–576 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Garvik, B., Carson, M. & Hartwell, L. Mol. Cell. Biol. 15, 6128–6138 (1995).

    CAS  Article  Google Scholar 

  27. 27

    White, C. I. & Haber, J. E. EMBO J. 9, 663–673 (1990).

    CAS  Article  Google Scholar 

  28. 28

    Weber, L. & Byers, B. Genetics 131, 55–63 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Weinert, T. A. & Lydall, D. in DNA Damage and Repair (eds Nickoloff, J. A. & Hoekstra, M.) (Humana in the press).

  30. 30

    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, NY, 1989).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lydall, D., Nikolsky, Y., Bishop, D. et al. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383, 840–843 (1996). https://doi.org/10.1038/383840a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing