Abstract
DESPITE tremendous efforts in the search for safe, efficacious and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Opioids exert their pharmacological actions through three opioid-receptor classes1,2, µ, δ and κ, whose genes have been cloned3. Genetic approaches are now available to delineate the contribution of each receptor in opioid function in vivo. Here we disrupt the μ-opioid-receptor gene in mice by homologous recombination and find that there are no overt behavioural abnormalities or major compensatory changes within the opioid system in these animals. Investigation of the behavioural effects of morphine reveals that a lack of μ receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. We observed no behavioural responses related to δ- or κ-receptor activation with morphine, although these receptors are present and bind opioid ligands. We conclude that the µ-opioid-receptor gene product is the molecular target of morphine in vivo and that it is a mandatory component of the opioid system for morphine action.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Browstein, M. Proc. Natl Acad. Sci. USA 90, 5391–5393 (1993).
- 2
Goldstein, A. & Naidu, A. Mol. Pharmacol. 36, 265–272 (1989).
- 3
Kieffer, B. L. Cell. Mol. Neurobiol. 15, 615–635 (1995).
- 4
Pasternak, G. W. Clin. Pharmacol. 16, 1–18 (1993).
- 5
Rossier, J. Nature 298, 221–222 (1982).
- 6
Cowan, A. in Handbook of Experimental Pharmacology Opioids II (ed. Herz, A.) Vol. 104, 393–414 (Springer, Berlin, 1993).
- 7
Roques, B. P., Noble, F., Daugé, V., Fournié-Zaluski, M.-C. & Beaumont, A. Pharmacol. Rev. 45, 87–146 (1993).
- 8
Baamonde, A., Daugé, V., Gacel, C. & Roques, B. P. J. Pharmacol. Exp. Ther. 257, 767–773 (1991).
- 9
Dickenson, A. H. Br. Med. Bull. 47, 690–702 (1991).
- 10
Gacel, G., Zajac, J. M., Delay-Goyet, P., Dauge, V. & Roques, B. P. J. Med. Chem. 31, 374–383 (1988).
- 11
Di Chiara, G. & North, A. Trends Pharmacol. Sci. 13, 185–193 (1992).
- 12
Koob, G. F. Trends Biochem. Sci. 13, 177–184 (1992).
- 13
Katz, R. J. & Gormezano, G. Pharmacol. Biochem. Behav. 11, 231–233 (1979).
- 14
Shippenberg, T. S., Bals-Kubik, R. & Herz, A. Brain Res. 436, 234–239 (1987).
- 15
Terwillinger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M. & Nestler, E. J. Brain Res. 548, 100–110 (1991).
- 16
Maldonado, R., Negus, S. & Koob, G. F. Neuropharmacology 31, 1231–1241 (1992).
- 17
Wei, E. T. J. Pharmacol. Exp. Ther. 216, 12–18 (1981).
- 18
Cowan, A., Zhu, X. Z., Mosberg, H. I., Omnaas, J. R. & Porreca, F. J. Pharmacol. Exp. Ther. 246, 950–955 (1988).
- 19
Traynor, J. R. & Elliot, J. Trends Pharmacol. Sci. 14, 84–85 (1993).
- 20
Kieffer, B. L., Befort, K., Gavéeriaux-Ruff, R. C. & Hirth, C. G. Proc. Natl Acad. Sci USA 89, 12048–12052 (1992).
- 21
McBurney, M. W. et al. Nucleic Acids Res. 19, 5755–5761 (1991).
- 22
Lufkin, T., Dierich, A., LeMeur, M., Mark, M. & Chambon, P. Cell 88, 1105–1119 (1991).
- 23
Ilien, B. et al. Biochem. Pharmacol. 37, 3843–3851 (1988).
- 24
Kitchen, I. et al. J. Pharmacol. Exp. Ther. 275, 1595–1607 (1995).
- 25
Décimo, D., Labouesse, G. & Dollé, P. in Gene probes 2: A Practical Approach (eds Names, B. D. & Higgins, S.) 183–210 (Oxford Univ. Press, 1995).
- 26
Schmidt, C. et al. Eur. J. Pharmacol. 192, 253–262 (1991).
- 27
Valverde, O., Fournier-Zaluski, M.-C., Roques, B. P. & Maldonado, R. Psychopharmacology 123, 119–126 (1996).
- 28
Maldonado, R. et al. Science 273, 657–650 (1996).
- 29
Hanoune, J., Stengel, D., Lacombe, M. L., Fledmann, G. & Coudrier, E. J. Biol. Chem. 252, 2039–2045 (1977).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Matthes, H., Maldonado, R., Simonin, F. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature 383, 819–823 (1996). https://doi.org/10.1038/383819a0
Received:
Accepted:
Issue Date:
Further reading
-
Biased ligands at opioid receptors: Current status and future directions
Science Signaling (2021)
-
NYX-2925, A NOVEL, NON-OPIOID, SMALL-MOLECULE MODULATOR OF THE N-METHYL-d-ASPARTATE RECEPTOR (NMDAR), DEMONSTRATES POTENTIAL TO TREAT CHRONIC, SUPRASPINAL CENTRALIZED PAIN CONDITIONS
Medicine in Drug Discovery (2021)
-
From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks
Trends in Endocrinology & Metabolism (2021)
-
Hnrnph1 is a novel regulator of alcohol reward
Drug and Alcohol Dependence (2021)
-
The role of the M1/M2 microglia in the process from cancer pain to morphine tolerance
Tissue and Cell (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.