Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extraterrestrial 3He as a tracer of marine sediment transport and accumulation

Abstract

THE deposition rate of deep-sea sediments, and their focused redeposition by deep-sea currents, can be evaluated from analyses of sedimentary 230Th with a temporal resolution limited only by bioturbation6,7,10,11. 230Th is produced uniformly throughout the ocean by radioactive decay of dissolved 234U and is removed sufficiently fast by sorption onto sinking particles to act as a 'constant-flux' tracer of sedimentation rates. But the half-life of 230Th (75 kyr) limits its use for this purpose to the past 200–250 kyr. Here we explore the use of extraterrestrial 3He from interplanetary dust particles1–4 (IDPs) as a constant-flux proxy that is free from this limitation. A comparison of 3He with 230Th in two cores from the equatorial Pacific Ocean indicates that the variability in the mean flux of IDPs over the past 200 kyr is less than 75%. But in contrast to this relatively constant rate of supply of 3He to the deep sea, the local burial rates of 3He and 230Th have varied by a factor of five over the past 450 and 200 kyr, respect-ively. We interpret this variability as reflecting sediment focusing, with a temporal pattern that suggests regular cycles of climate-driven reorganization of near-bottom currents in the deep Pacific Ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takayanagi, M. & Ozima, M. J. Geophys. Res. 92, 12531–12538 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Farley, K. A. Nature 376, 153–156 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Marcantonio, F. et al. Earth Planet. Sci. Lett. 133, 549–555 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Farley, K. A. & Patterson, D. B. Nature 378, 600–603 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Krishnaswami, S. Geochim. Cosmochim. Acta 40, 425–434 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Bacon, M. P. Isotope Geosci. 2, 97–111 (1984).

    CAS  Google Scholar 

  7. François, R., Bacon, M. P. & Suman, D. O. Paleoceanography 5, 761–787 (1990).

    Article  ADS  Google Scholar 

  8. Lao, Y., Anderson, R. F., Broecker, W. S., Hofmann, H. J. & Wolfi, W. Geochim. Cosmochim. Acta 57, 205–217 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Yu, E.-F. thesis, WHOI/MIT (1994).

  10. Suman, D. O. & Bacon, M. P. Deep-Sea Res. 36, 869–878 (1989).

    Article  ADS  CAS  Google Scholar 

  11. François, R., Bacon, M. P., Altabet, M. A. & Labeyrie, L. D. Paleoceanography 8, 611–629 (1993).

    Article  ADS  Google Scholar 

  12. Imbrie, J. et al. in Milankovitch and Climate (ed. Berger, A. L.) 269–305 (Reidel, Norwell, 1984).

    Google Scholar 

  13. Murray, R. W., Leinen, M., Murray, D. W., Mix, A. C. & Knowlton, C. W. Glob. Biogeochem. Cycles 9, 667–684 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Farrell, J. W. & Prell, W. L. Paleoceanography 4, 447–466 (1989).

    Article  ADS  Google Scholar 

  15. Luz, B. & Shackleton, N. J. in Dissolution of Deep-Sea Carbonates (eds Sliter, W. V., Bé, A. W. H. & Berger, W. H.) 142–150 (Spec. Publ. Cushman Foundn Foraminiferal Res., US National Museum, Washington DC, 1975).

    Google Scholar 

  16. Shackleton, N. J. & Opdyke, N. D. Mem. Geol. Soc. Am. 145, 449–464 (1976).

    CAS  Google Scholar 

  17. Moore, T. C., Pisias, N. G. & Heath, G. R. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 145–165 (Plenum, New York, 1977).

    Book  Google Scholar 

  18. Keir, R. S. & Berger, W. H. J. Geophys. Res. 88, 6027–6038 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Nier, A. O., Schlutter, D. J. & Brownlee, D. E. Geochim. Cosmochim Acta 54, 173–182 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Nier, A. O. & Schlutter, D. J. Meteoritics 27, 166–173 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Love, S. G. & Schlutter, D. J. Meteoritics 27, 166–173 (1992).

    Article  ADS  Google Scholar 

  22. Muller, R. A. & MacDonald, G. J. Nature 377, 107–108 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Anderson, R. F. et al. Earth Planet. Sci. Lett. 90, 287–304 (1990).

    Article  ADS  Google Scholar 

  24. Broecker, W. S. & Peng, T.-H. Glob. Biogeochem. Cycles 3, 215–239 (1989).

    Article  ADS  Google Scholar 

  25. Keir, R. S. Paleoceanography 10, 871–880 (1995).

    Article  ADS  Google Scholar 

  26. Murray, R. W. & Leinen, M. Geochim. Cosmochim. Acta 57, 4141–4163 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcantonio, F., Anderson, R., Stute, M. et al. Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383, 705–707 (1996). https://doi.org/10.1038/383705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383705a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing