Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mechanism for generation of long-range synchronous fast oscillations in the cortex


SYNCHRONOUS neuronal oscillations in the 30–70 Hz range, known as gamma oscillations, occur in the cortex of many species1–6. This synchronization can occur over large distances, and in some cases over multiple cortical areas7,8 and in both hemispheres2; it has been proposed to underlie the binding of several features into a single perceptual entity4. The mechanism by which coherent oscillations are generated remains unclear, because they often show zero or near-zero phase lags over long distances, whereas much greater phase lags would be expected from the slow speed of axonal conduction. We have previously shown that interneuron networks alone can generate gamma oscillations9,10; here we propose a simple model to explain how an interconnected chain of such networks can generate coherent oscillations. The model incorporates known properties of excitatory pyramidal cells and inhibitory interneurons; it predicts that when excitation of inter-neurons reaches a level sufficient to induce pairs of spikes in rapid succession (spike doublets), the network will generate gamma oscillations that are synchronized on a millisecond time-scale from one end of the chain to the other. We show that in rat hippocampal slices interneurons do indeed fire spike doublets under conditions in which gamma oscillations are synchronized over several millimetres, whereas they fire single spikes under other conditions. Thus, known properties of neurons and local synaptic circuits can account for tightly synchronized oscillations in large neuronal ensembles.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Gray, C. M., König, P., Engel, A. K. & Singer, W. Nature 338, 334–337 (1989).

    ADS  CAS  Article  Google Scholar 

  2. Engel, A. K., König, P., Kreiter, A. K. & Singer, W. Science 252, 1177–1179 (1991).

    ADS  CAS  Article  Google Scholar 

  3. Gray, C. M. J. Comput. Neurosci. 1, 11–38 (1994).

    CAS  Article  Google Scholar 

  4. Singer, W. & Gray, C. M. Annu. Rev. Neurosci. 18, 555–586 (1995).

    CAS  Article  Google Scholar 

  5. Soltesz, I. & Deschênes, M. J. Neurophysiol. 70, 97–116 (1993).

    CAS  Article  Google Scholar 

  6. Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K. & Buzsáki, G. J. Neurosci. 15, 47–60 (1995).

    CAS  Article  Google Scholar 

  7. Engel, A. K., Kreiter, A. K., König, P. & Singer, W. Proc. Natl Acad. Sci. USA 88, 6048–6052 (1991).

    ADS  CAS  Article  Google Scholar 

  8. Frien, A., Eckhorn, R., Bauer, R., Woelbern, T. & Kehr, H. Neuroreport 5, 2273–2277 (1994).

    CAS  Article  Google Scholar 

  9. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Nature 373, 612–615 (1995).

    ADS  CAS  Article  Google Scholar 

  10. Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G. & Jefferys, J. G. R. J. Physiol. 493, 471–484 (1996).

    CAS  Article  Google Scholar 

  11. Innocenti, G. M. Arch. Ital. Biol. 118, 124–188 (1980).

    CAS  PubMed  Google Scholar 

  12. Ribary, U. et al. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991).

    ADS  CAS  Article  Google Scholar 

  13. Andersen, P., Silfvenius, H., Sundberg, S., Sveen, O. & Wigström, H. Brain Res. 144, 11–18 (1978).

    CAS  Article  Google Scholar 

  14. Murakoshi, T., Guo, J.-Z. & Ichinose, T. Neurosci. Lett. 163, 211–214 (1993).

    CAS  Article  Google Scholar 

  15. Salin, P. A. & Prince, D. A. J. Neurophysiol. 75, 1589–1600 (1996).

    CAS  Article  Google Scholar 

  16. Llinás, R. R., Grace, A. A. & Yarom, Y. Proc. Natl Acad. Sci. USA 88, 897–901 (1991).

    ADS  Article  Google Scholar 

  17. Wilson, M. A. & Bower, J. M. Neural Comput. 3, 498–509 (1991).

    Article  Google Scholar 

  18. Traub, R. D. & Miles, R. J. Comput. Neurosci. 2, 291–298 (1995).

    CAS  Article  Google Scholar 

  19. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. J. Neurosci. 15, 6651–6665 (1995).

    CAS  Article  Google Scholar 

  20. Buhl, E. H. et al. J. Neurophysiol. 71, 1289–1307 (1994).

    CAS  Article  Google Scholar 

  21. Bauer, R., Brosch, M. & Eckhorn, R. Brain Res. 669, 291–297 (1995).

    CAS  Article  Google Scholar 

  22. König, P. & Schillen, T. B. Neural Comput. 3, 155–166 (1991).

    Article  Google Scholar 

  23. Bush, P. & Sejnowski, T. J. Comput. Neurosci. 3, 91–110 (1996).

    CAS  Article  Google Scholar 

  24. Eeckman, F. H. & Freeman, W. J. Brain Res. 528, 238–244 (1990).

    CAS  Article  Google Scholar 

  25. Kisvárday, Z. F., Beaulieu, C. & Eysel, U. T. J. Comp. Neurol. 327, 398–415 (1993).

    Article  Google Scholar 

  26. Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A. & Tóth, K. J. Physiol. 481, 79–95 (1994).

    CAS  Article  Google Scholar 

  27. Wong, R. K. S. & Prince, D. A. J. Neurophysiol. 45, 86–97 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Traub, R., Whittington, M., Stanford, I. et al. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing