Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The osmium isotopic composition of the Earth's primitive upper mantle

Abstract

THE elevated abundances of highly siderophile elements in the Earth's mantle, relative to what would be predicted from metal–silicate equilibrium, have often been cited as evidence for the accretion to the Earth of a 'late veneer' of chondritic material following core formation1. As rhenium and its decay-product osmium are both highly siderophile, the evolution of the Re–Os isotope system in a terrestrial reservoir provides a robust, time-averaged constraint on the siderophile abundances of the reservoir; thus, the broadly chondritic evolution of Os isotopes in the oceanic upper mantle provides strong support for the late accretion model2,3. But the Re–Os composition of the late veneer is still poorly defined, because the mantle has differentiated into 187Os-enriched and -depleted reservoirs4–7. Here we report a value for the Os isotopic composition of the modern 'primitive upper mantle' (PUM), a hypothetical undifferentiated upper-mantle reservoir. From suites of variably melt-depleted mantle xenoliths from three continents, we derive a minimum 187Os/188Os ratio for PUM of 0.1290 ± 0.0009, by using a correlation between 187Os/188Os and geochemical indices of 'fertility' to extrapolate to the Os isotope ratio of undepleted mantle. Comparing this value to the 187Os/188Os ratios measured in different classes of chrondritic meteorite, we infer that the late veneer had siderophile element abundances similar to those of enstatite or ordinary chondrites (187Os/188Os = 0.1286 ± 0.0010), rather than carbonaceous chondrites (0.1258 ± 0.0005).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Newsom, H. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 273–288 (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  2. Allègre, C. J. & Luck, J.-M. Earth Planet. Sci. Lett. 48, 148–154 (1980).

    Article  ADS  Google Scholar 

  3. Walker, R. J., Hanski, E., Vuollo, J. & Liipo, J. Earth Planet. Sci. Lett. 141, 161–173 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Geochim. Cosmochim. Acta 53, 1583–1595 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Matin, C. E. Geochim. Cosmochim. Acta 55, 1421–1434 (1991).

    Article  ADS  Google Scholar 

  6. Walker, R. J., Echeverría, L. M., Shirey, S. B. & Horan, M. F. Contrib. Mineral. Petrol. 107, 150–162 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Hauri, E. H. & Hart, S. R. Earth Planet. Sci. Lett. 114, 353–371 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Jagoutz, E. et al. Proc. Lunar Planet. Sci. Conf. X, 353–371 (1993).

    Google Scholar 

  9. Hart, S. R. & Zindler, A. Chem. Geol. 57, 247–267 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Luck, J. M. & Allègre, C. J. Earth Planet. Sci. Lett. 107, 406–415 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Roy-Barman, M. & Allègre, C. J. Geochim. Cosmochim. Acta 58, 5043–5054 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Reisberg, L. C., Zindler, A. & Luck, J.-M. Earth Planet. Sci. Lett. 105, 196–213 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Reisberg, L. & Lorand, J.-P. Nature 376, 159–162 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Wänke, H., Dreibus, G. & Jagoutz, E. in Archaean Geochemistry (eds Kröner, A., Hanson, G. N. & Goodwin, A. M.) 1–24 (Springer, Berlin, 1984).

    Book  Google Scholar 

  15. McDonough, W. F. & Sun, S.-S. Chem. Geol. 120, 223–253 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Morgan, J. W. & Baedecker, P. A. Proc. Lunar Planet. Sci. Conf. (abstr.) XIV, 513–514 (1983).

    ADS  Google Scholar 

  17. Hart, S. R. & Ravizza, G. in AGU Monog. 95, 123–134 (1996).

    Google Scholar 

  18. McDonough, W. F. & Frey, F. A. in Geochemistry and Mineralogy of Rare Earth Elements (eds Lipin, B. & McKay, G. R.) 99–145 (Mineralogical Society of America, Chelsea, Michigan, 1989).

    Book  Google Scholar 

  19. Basaltic Volcanism Study Project (eds Kaula, W. M. et al.) Basaltic Volcanism on the Terrestrial Planets 282–310 (Pergamon, New York, 1981).

  20. Roden, M. F., Irving, A. J. & Murthy, R. Geochim. Cosmochim. Acta 52, 461–473 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Stosch, H.-G. & Seck, H. A. Geochim. Cosmochim. Acta 44, 457–470 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Stosch, H.-G., Lugmair, G. W. & Kovalenko, V. I. Geochim. Cosmochim. Acta 50, 2601–2614 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Stosch, H. G., Carlson, R. W. & Lugmair, G. W. Earth Planet. Sci. Lett. 47, 263–271 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Ebihara, M., Wolf, R. & Anders, E. Geochim. Cosmochim. Acta 46, 1849–1861 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Morgan, J. W. Nature 317, 703–705 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Snow, J. E. & Reisberg, L. Earth Planet. Sci. Lett. 136, 723–733 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Murthy, V. R. Science 253, 303–306 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Walker, D., Norby, L. & Jones, J. H. Science 262, 1858–1860 (1993).

    Article  ADS  CAS  Google Scholar 

  29. O'Neill, H. St. C., Dingwell, D. B., Borisov, A., Spettel, B. & Palme, H. Chem. Geol. 120, 255–273 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Kokubu, N., Mayeda, T. & Urey, H. C. Geochim. Cosmochim. Acta 21, 247–256 (1961).

    Article  ADS  CAS  Google Scholar 

  31. Turekian, K. K. & Clark, S. P. Jr Earth Planet. Sci. Lett. 6, 346–348 (1969).

    Article  ADS  CAS  Google Scholar 

  32. Ganapathy, R. & Anders, E. Proc. Lunar Planet. Sci. Conf. V, 1181–1206 (Pergamon, Houston, 1974).

    ADS  Google Scholar 

  33. Wänke, H. Phil. Trans. R. Soc. Lond. A. 303, 287–302 (1981).

    Article  ADS  Google Scholar 

  34. O'Neill, H. St. C. Geochim. Cosmochim. Acta 55, 1159–1172 (1991).

    Article  ADS  CAS  Google Scholar 

  35. Shirey, S. B. & Walker, R. J. Anal. Chem. 67, 287–302 (1981).

    Google Scholar 

  36. Morgan, J. W., Horan, M. F., Walker, R. J. & Grossman, J. N. Geochim. Cosmochim. Acta 59, 2331–2344 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Smoliar, M. I., Walker, R. J. & Morgan, J. W. Science 271, 1099–1102 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meisel, T., Walker, R. & Morgan, J. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–520 (1996). https://doi.org/10.1038/383517a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383517a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing