Abstract
THE eastern equatorial Pacific Ocean is one of only three open-ocean regions where low phytoplankton chlorophyll biomass persists despite perennially high nitrate and phosphate nutrient concentrations1. In 1993, an area within this region was artificially enriched with a single dose of soluble iron to test whether phytoplankton are physiologically prevented from utilizing the available nutrients by the low natural iron concentrations2,3. Although photosynthesis was stimulated4, the observed lack of a bloom or a significant decrease in nutrient concentrations could not be attributed unequivocally to zooplankton grazing5–7, further iron limitation or secondary nutrient limitation2,4. In 1995, a second iron-enrichment experiment (IronEx II) was conducted in which the same total dosage of iron was added, but over eight days8. A massive phytoplankton bloom developed, significantly reducing surface-water nutrient and CO2 concentrations8–10. Here we report in situ measurements of fluorescence during IronEx II, which show that the iron enrichment triggered biophysical alterations of the phytoplankton's photosynthetic apparatus, resulting in increased photosynthetic capacities throughout the experiment and, hence, the observed bloom. These results unequivocally establish physiological limitation of phytoplankton by iron as the cause of the high-nitrate, low-chlorophyll phenomenon in this ocean region.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Martin, J. H. Oceanography 4, 52–55 (1991).
Martin, J. H. et al. Nature 371, 123–129 (1994).
Falkowski, P. G. Global Change Biol. 1, 161–163 (1995).
Kolber, Z. S. et al. Nature 371, 145–149 (1994).
Banse, K. Nature 375, 112 (1995).
Cullen, J. J. Limnol. Oceanogr. 40, 1336–1343 (1995).
Wells, M. L. Nature 368, 295–296 (1994).
Coale, K. et al. Nature 383, 495–501 (1996).
Millero, F. J., Zhu, X. R. & Steinberg, P. A. Eos 76, suppl., abstr. OS42M-01 (1996).
Cooper, D. J., Watson, A. J. & Nightingale, P. D. Nature 383, 511–513 (1996).
Kolber, Z. & Falkowski, P. G. Limnol. Oceanogr. 38, 1646–1665 (1993).
Falkowski, P. G. & Kolber, Z. Aust. J. Plant Physiol. 22, 341–355 (1995).
Cavender-Bares, K. K., Mann, E. & Chisholm, S. W. Nature (submitted).
Vassiliev, I. R. et al. Plant Physiol. 109, 963–972 (1995).
Greene, R. M., Geider, R. J. & Falkowski, P. G. Limnol. Oceanogr. 36, 1772–1782 (1991).
Greene, R. M., Geider, R. J., Kolber, Z. & Falkowski, P. G. Plant Physiol. 100, 565–575 (1992).
Banse, K. Limnol. Oceanogr. 35, 772–775 (1990).
Frost, B. W. Limnol. Oceanogr. 36, 1616–1630 (1991).
Banse, K. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 409–440 (Plenum, New York, 1992).
Falkowski, P. G. Global Change Biol. 1, 161–163 (1995).
Lehman, J. T. Limnol. Oceanogr. 36, 1546–1554 (1991).
Goldman, J. C. in Primary Productivity in the Sea (ed. Falkowski, P. G.) 179–194 (Plenum, New York, 1980).
Kolber, Z. & Falkowski, P. G. Plant Physiol. 88, 72–79 (1988).
Tilman, D., Wedin, D. & Knops, J. Nature 379, 718–720 (1996).
Paine, R. T. in Readings in Aquatic Ecology (eds Ford, R. F. & Hazen, W. E.) 276–287 (Saunders, Philadelphia, 1972).
Carpenter, S. R. et al. Science 269, 324–327 (1995).
Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).
Berger, W. H. & Wefer, G. Limnol. Oceanogr. 36, 1899–1918 (1991).
Murray, R. W. et al. Global Biogeochem. Cycles 9, 1899–1918 (1991).
Sarmiento, J. L. & Orr, J. C. Limnol. Oceanogr. 36, 1928–1950 (1991).
Kumar, N. et al. Nature 378, 675–680 (1995).
Aiken, J. & Bellan, I. in Light and Life in the Sea (eds Herring, P. J., Campbell, A. K., Whitfield, M. & Maddock, L.) 39–59 (Cambridge University Press, Cambridge, 1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Behrenfeld, M., Bale, A., Kolber, Z. et al. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383, 508–511 (1996). https://doi.org/10.1038/383508a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/383508a0
This article is cited by
-
Impact of Pacific Ocean heatwaves on phytoplankton community composition
Communications Biology (2023)
-
Genome analysis of Parmales, the sister group of diatoms, reveals the evolutionary specialization of diatoms from phago-mixotrophs to photoautotrophs
Communications Biology (2023)
-
Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean
Microbial Ecology (2019)
-
Function of the IsiA pigment–protein complex in vivo
Photosynthesis Research (2019)
-
The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron
Photosynthesis Research (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.