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How, in a simple and forceful way, do we 
characterize the dynamics of systems with 
several moving components? When the 
components move in two dimensions, 
methods based on the theory of braids 
may provide the answer. That is why an 
experiment on the motion of beads drift
ing in a magnetized fluid1 will be of 
general interest to those studying non
linear dynamics. The space-time diagrams 
reveal a rich topological structure that 
would not be readily apparent in a motion 
picture of the beads. 

People generally visualize objects as they 
exist at one instant of time; in a drawing, a 
one-dimensional curve represents the posi
tion and shape of a filament. But just over 
a century ago in The Time Machine, H. G. 
Wells advocated a different way of looking 
at objects - as they exist in both space and 
time. This adds an extra dimension: in a 
diagram with one axis representing the 
time coordinate, particles generate one
dimensional curves, and a loop of string 
becomes a tube. A decade later, special rel
ativity made this viewpoint fundamental to 
our understanding of nature. Even though 
most scientific work does not involve rela
tivistic effects, time generally does play a 
role, and researchers may well wonder how 
their data would look as plotted in a 
space-time diagram. 

In the new experiment by Pieranski et 
al. 1, non-magnetic spherical beads are 
placed in a thin layer of fluid containing 
iron particles. A rotating magnetic field 
sets the fluid in motion. The beads behave 
like magnetic holes, and interact with one 
another according to simple, but nonlinear, 
equations. The essentially two-dimensional 
motion of a bead can be represented as a 
curve in a three-dimensional space- time 
diagram, and so several beads in motion 
produce a set of braided curves. 

The authors suggest that the topologi
cal description of this braid provides a 
simple and concise language for describ
ing the dynamics of the system. Here one 
ignores all the little wiggles in the motions 
of the magnetic holes, concentrating 
instead on the overall pattern of move
ment. The holes perform a complicated 
dance as they move about one another, 
and the braid encodes the choreography 
of this dance. 

To understand what is meant by the 
topology of a braid, think of a set of 
strings stretching between two parallel 
planes (see figure), crossing one another 
at several places. Emil Artin in 1925 gave 
a simple way of keeping track of the cross
ings, and hence describing the braid struc
ture. Just below each crossing, label the 
strings 1, 2, 3 ... from left to right. If string 
2 crosses over string 3, label the crossing 
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a-2; if it crosses under string 3, label the 
crossing a-2- 1 ( the character a- is just some
thing to attach subscripts and superscripts 
to). The entire braid can be coded as a 
sequence of these symbols. 

Suppose we fix the ends of the strings at 
the two boundary planes, but deform the 
strings in between. Such an operation is 
said to preserve the topology of the braid, 

l 2 3 l 2 3 

Two braid diagrams. Although their sequences 
of crossings are different (CT2- 1 CT2- 1 

CT1- 1CT1- 1CT2<T2<T1<T1 and <T2- 1<T1<T2- 1<T1CT2- 1u1; see 
text), they are topologically equivalent. The 
right-hand braid is the standard pattern for 
plaiting pigtails. 

even though the sequence of Artin sym
bols may change. For example, a braid 
with the sequence a-2a-1 a-2 can readily be 
converted to one with the sequence 
a-1 a-2a-1• Simple algebraic algorithms can 
be used to check whether two sequences 
belong to the same braid topology2. 

Once a sequence of motions has been 
converted into braid notation, it can be 
further examined to obtain numbers char
acterizing the structure and complexity 
of the braid. For example, the number of 
positive crossings minus the number of 
negative crossings (those with the - 1 
superscript) is a topological invariant 
known as the 'writhe', which characterizes 
the net twist of the braid. And the mini
mum possible length of the braid sequence 
provides a measure of complexity. At 
present, simple algorithms exist only for 
minimizing braids with three strings3• 

The algebra of braids has applications 
in several areas of mathematics and 
theoretical physics, including statistical 
mechanics and field theory4• In 1983, Joan 

Birman and R. F. Williams developed 
mathematical tools for analysing the knot
tedness of trajectories5 • Since then, braid 
theory, a subset of knot theory, has been a 
particularly rich source of insight6. For 
example, Alan McRobie and Mike 
Thompson used braid diagrams to look at 
the trajectories of nonlinear oscillators 7. 

To illustrate this technique, consider a 
ship rolling in heavy seas. On the x-y 
plane, plot the angle of roll against the 
velocity of rolling, and then follow the 
evolution of these two coordinates with 
time. A set of a few different initial values 
will lead to trajectories that trace out a 
braid, and the braid topology will change 
as the parameters of the physical system 
change - dramatically so when there is a 
bifurcation or when qualitatively new 
behaviour emerges. In this case, "qualita
tively new behaviour" can mean the ship 
capsizing. 

Braid theory has applications in astro
physics as well8• X-ray pictures of the Sun 
often show clouds of gas as long loops or 
arches; these loops trace out the direction 
of the magnetic lines of force, and often 
display a complex braided and twisted 
structure that reflects the pattern of 
motion of magnetic flux at the surface of 
the Sun. Braid complexity correlates with 
magnetic energy storage, and violent 
changes in the braid pattern can release 
this energy, heating the solar atmosphere 
to millions of degrees and accelerating 
charged particles to high energy. We may 
be able to predict such magnetic storms by 
monitoring the complexity of the braids. 

Theoretical work by Christopher 
Moore9 and the experiment by Pieranski 
et al. point to new directions for research. 
Moore looked at two-dimensional dynam
ical systems in general, and proved that 
any braid type can be realized as a set of 
trajectories in some dynamical system. 
But linking braid structures to particular 
systems, especially those that occur in 
natural or experimental settings, remains 
to be done. 

Braids generated by random mecha
nisms can also be usefully studied. The 
tangle of wires under your desk or behind 
your stereo system may prove to be a ripe 
source of investigation. D 
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