Review Article | Published:

Supercritical fluids as solvents for chemical and materials processing

Nature volume 383, pages 313318 (26 September 1996) | Download Citation

Subjects

Abstract

Fluids near their critical point have dissolving power comparable to that of liquids, are much more compressible than dilute gases, and have transport properties intermediate between gas-and liquid-like. This unusual combination of physical properties can be advantageously exploited in environmentally benign separation and reaction processes, as well as for new kinds of materials processing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Proc. R. Soc. Lond. A 29, 324–326 (1879).

  2. 2.

    , & Science 257, 945–947 (1992).

  3. 3.

    et al. Science 265, 356–359 (1994).

  4. 4.

    , , & in Supercritical Fluid Engineering Science: Fundamentals and Applications (eds Kiran, E. & Brennecke, J. F.) 238–257 (ACS Symp. Ser. 514, American Chemical Soc., Washington DC, 1993).

  5. 5.

    & J. Appl. Polym. Sci. 50, 1929–1942 (1993).

  6. 6.

    et al. Ind. Eng. Chem. Res. 35, 1801–1806 (1996).

  7. 7.

    Angew. Chem. Int. Edn Engl. 17, 702–709 (1978).

  8. 8.

    & Hydrocarbon Process. 55, 125–129 (1976).

  9. 9.

    , & Biotechnol. Bioeng. 34, 1357–1365 (1989).

  10. 10.

    & Supercritical Fluid Extraction (Butterworth-Heinemann, Boston, 1994).

  11. 11.

    & Am. Inst. Chem. Eng. J. 35, 1409–1427 (1989).

  12. 12.

    in Supercritical Fluids, Fundamentals for Application (eds Kiran, E. & Levelt Sengers, J. M. H.) 91–116, 739–760 (NATO ASI Ser. E, 273, Kluwer, Dordrecht, 1994).

  13. 13.

    & J. Supercrit. Fluids 1, 15–22 (1988).

  14. 14.

    & Ind. Eng. Chem. Res. 30, 575–580 (1991).

  15. 15.

    & Ger. Chem. Eng. 5, 181–195 (1982).

  16. 16.

    & Fluid Phase Equil. 32, 77–99 (1986).

  17. 17.

    Chem. Thermodyn. 17, 671–679 (1985).

  18. 18.

    , , & Ind. Eng. Chem. Res. 32, 1488–1497 (1993).

  19. 19.

    & J. Chem. Eng. Data 38, 605–610 (1993).

  20. 20.

    in Supercritical Fluids, Fundamentals for Application (eds Kiran, E. & Levelt Sengers, J. M. H.) 3–38 (NATO ASI Ser. E, 273, Kluwer, Dordrecht, 1994).

  21. 21.

    & Annu. Rev. Phys. Chem. 37, 189–222 (1986).

  22. 22.

    & J. Chem. Phys. 74, 1930–1943 (1981).

  23. 23.

    & Am. Inst. Chem. Eng. J. 32, 2034–2046 (1986).

  24. 24.

    & Ber. Bunsenges. Phys. Chem. 83, 969–974 (1979).

  25. 25.

    & J. Phys. Chem. 95, 386–399 (1991).

  26. 26.

    Kiran, E. & Levelt Sengers, J. M. H. (eds) Supercritical Fluids. Fundamentals for Application 761–771 (NATO ASI Ser. E, 273, Kluwer, Dordrecht, 1994).

  27. 27.

    , , & Ind. Eng. Chem. Res. 29, 1682–1690 (1990).

  28. 28.

    , , & J. Phys. Chem. 96, 1001–1007 (1992).

  29. 29.

    et al. Am. Inst. Chem. Eng. J. 39, 235–248 (1993).

  30. 30.

    , & J. Phys. Chem. 86, 4948–4951 (1982).

  31. 31.

    , , & J. Phys. Chem. 90, 2738–2746 (1986).

  32. 32.

    , & J. Phys. Chem. 86, 4948–4951 (1982).

  33. 33.

    Ber. Bunsenges. Phys. Chem. 76, 308–318 (1972).

  34. 34.

    & Fluid Phase Equil. 8, 93–105 (1982).

  35. 35.

    J. Phys. Chem. 97, 2740–2744 (1993).

  36. 36.

    , & Ber. Bunsenges. Phys. Chem. 88, 865–875 (1984).

  37. 37.

    & Can. J. Chem. 62, 2560–2565 (1984).

  38. 38.

    , , , & in Supercritical Fluid Technology: Theoretical and Applied Approaches in Analytical Chemistry (eds Bright, F. V. & McNally, M. E. P.) 60–72 (ACS Symp. Ser. 488, American Chemical Soc., Washington DC, 1992).

  39. 39.

    , , & Am. Inst. Chem. Eng. J. 39, 1061–1071 (1993).

  40. 40.

    & Am. Inst. Chem. Eng. J. 33, 1603–1611 (1987).

  41. 41.

    & J. Phys. Chem. 92, 2374–2378 (1988).

  42. 42.

    & Ind. Eng. Chem. Res. 32, 943–951 (1993).

  43. 43.

    , & J. Am. Chem. Soc. 113, 8327–8334 (1991).

  44. 44.

    , & J. Phys. Chem. 97, 707–715 (1993).

  45. 45.

    , , , & J. Phys. Chem. 97, 11823–11834 (1993).

  46. 46.

    & J. Chem. Phys. 91, 7075–7084 (1989).

  47. 47.

    & Am. Inst. Chem. Eng. J. 40, 1558–1573 (1994).

  48. 48.

    , & J. Phys. Chem. 99, 9268–9277 (1995).

  49. 49.

    , & Ind. Eng. Chem. Res. 29, 977–988 (1990).

  50. 50.

    & Ind. Eng. Chem. Res. 32, 2118–2128 (1993).

  51. 51.

    & Fluid Phase Equil. 57, 227–247 (1990).

  52. 52.

    & Fluid Phase Equil. 71, 237–272 (1992).

  53. 53.

    , & J. Supercrit. Fluids 3, 157–161 (1990).

  54. 54.

    , & Chem. Eng. Sci. 49, 2735–2748 (1994).

  55. 55.

    & Chem. Eng. Sci. 49, 2749–2763 (1994).

  56. 56.

    , & J. Am. Chem. Soc. 116, 2689–2690 (1994).

  57. 57.

    in Supercritical Fluids. Fundamentals for Application (eds Kiran, E. & Levelt Sengers, J. M. H.) 449–479 (NATO ASI Ser. E, 273, Kluwer, Dordrecht, 1994).

  58. 58.

    & Am. Inst. Chem. Eng. J. 33, 2017–2026 (1987).

  59. 59.

    & Chem. Eng. Commun. 63, 49–59 (1988).

  60. 60.

    , & J. Am. Chem. Soc. 114, 8455–8463 (1992).

  61. 61.

    , & Ind. Eng. Chem. Res. 33, 965–974 (1994).

  62. 62.

    & J. Phys. Chem. 96, 5146–5151 (1992).

  63. 63.

    & J. Am. Chem. Soc. 114, 7821–7826 (1992).

  64. 64.

    , , & Photochem. Photobiol. 54, 571–576 (1991).

  65. 65.

    , , & J. Phys. Chem. 97, 5618–5623 (1993).

  66. 66.

    , & J. Phys. Chem. 98, 4173–4179 (1994).

  67. 67.

    , , & Proc. Natl. Acad. Sci. USA 90, 2940–2944 (1993).

  68. 68.

    , & J. Am. Chem. Soc. 117, 3728–3733 (1995).

  69. 69.

    , , & Macromolecules 26, 6207–5210 (1993).

  70. 70.

    et al. J. Pharm. Sci. 85, 586–594 (1996).

  71. 71.

    , , & Biotechnol. Bioeng. 41, 341–346 (1993).

  72. 72.

    , , & J. Pharm. Sci. 83, 1651–1656 (1994).

  73. 73.

    , & Am. Inst. Chem. Eng. J. 39, 127–139 (1993).

  74. 74.

    & J. Aerosol Sci. 22, 555–584 (1991).

  75. 75.

    , , & Biotechnol. Prog. 9, 429–435 (1993).

  76. 76.

    , , & Ind. Eng. Chem. Res. 26, 2058–2062 (1987)

  77. 77.

    & Ind. Eng. Chem. Res. 34, 275–282 (1995).

  78. 78.

    , , , & Chem. Eng. News 69 (51), 26–39 (1991).

  79. 79.

    , , & J. Am. Chem. Soc. 118, 344–345 (1996).

  80. 80.

    Science 271, 613–614 (1996).

  81. 81.

    et al. Science 271, 624–626 (1996).

  82. 82.

    , , , & J. Am. Chem. Soc. 118, 1729–1736 (1996).

Download references

Author information

Affiliations

  1. School of Chemical Engineering and Specialty Separations Center, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA.

    • Charles A. Eckert
  2. Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, USA.

    • Barbara L. Knutson
  3. Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA.

    • Pablo G. Debenedetti

Authors

  1. Search for Charles A. Eckert in:

  2. Search for Barbara L. Knutson in:

  3. Search for Pablo G. Debenedetti in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/383313a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.