Letter | Published:

Contribution of human hippocampal region to novelty detection

Nature volume 383, pages 256259 (19 September 1996) | Download Citation

Subjects

Abstract

THE ability to respond to unexpected stimuli (the 'orienting response') is a fundamental characteristic of mammalian behaviour1, but the brain mechanisms by which novelty is detected remain poorly defined. Electrophysiological recordings of scalp and intracranial event-related potentials (ERPs) have shown that novel stimuli activate a distributed network involving prefrontal and posterior association cortex2–6. In addition, ERP7,8 and single-neuron9,10 recordings, as well as neuroimaging11 and modelling12 studies, have suggested that temporal cortical regions, including the hippocampus, are also involved. To examine further the role of the medial temporal lobe in novelty processing, I measured physiological responses to novel auditory and tactile stimuli in patients with damage to the posterior hippocampal region. In normal control subjects, unexpected novel stimuli produce a characteristic ERP signal, accompanied by an autonomic skin response. Both responses are reduced in hippocampal lesion patients, whereas the response to expected control stimuli is unaffected. Thus the hippocampal region, in addition to its known role in memory formation, is an essential component of the distributed limbic–cortical network that detects and responds to novel stimuli.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Annu. Rev. Physiol. 25, 545–580 (1963).

  2. 2.

    Electroenceph. Clin. Neurophysiol. 59, 9–20 (1984).

  3. 3.

    , , & Brain Res. 502, 109–116 (1989).

  4. 4.

    & J. Neurosci. 11, 2039–2054 (1991).

  5. 5.

    et al. Electroenceph. Clin. Neurophysiol. 94, 191–220 (1995).

  6. 6.

    , , & Electroencephal. Clin. Neurophysiol. 94, 251–264 (1995).

  7. 7.

    & in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 1137–1151 (MIT Press, Cambridge, MA, 1995).

  8. 8.

    & Soc. Neuroscience (abstr.) 19, 564 (1993).

  9. 9.

    , , & Exp. Brain Res. 93, 299–306 (1993).

  10. 10.

    , & Science 254, 1377–1380 (1991).

  11. 11.

    , , , & Cerebral Cortex 6, 71–79 (1996).

  12. 12.

    Psychol. Rev. 100, 3–22 (1993).

  13. 13.

    , & Electroenceph. Clin. Neurophysiol. 83, 387–401 (1975).

  14. 14.

    , & Electroenceph. Clin. Neurophysiol. 39, 131–143 (1975).

  15. 15.

    & Electroenceph. Clin. Neurophysiol. 86, 408–417 (1993).

  16. 16.

    et al. Neurology 42, 1762–1767 (1992).

  17. 17.

    & Hippocampus 4, 374–391 (1994).

  18. 18.

    Psychol. Forsch. 18, 299–342 (1933).

  19. 19.

    , & Cogn. Psychol. 16, 177–216 (1984).

  20. 20.

    , & Neuroscience 12, 719–743 (1984).

  21. 21.

    , & in Neuropsychiatry (eds Fogel, B. S., Schiffer, R. B. & Rao, S. M.) 113–143 (Williams and Wilkins, Baltimore, 1996).

  22. 22.

    & J. Neurosci. 14, 2775–2788 (1994).

  23. 23.

    & Science 272, 1484–1486 (1996).

  24. 24.

    , & Behav. Brain Sci. 17, 449–518 (1994).

  25. 25.

    , , & Neurology 42, 170 (1992).

  26. 26.

    , & Brain 110, 1099–1116 (1987).

  27. 27.

    , & Brain 111, 1061–1077 (1988).

  28. 28.

    , & Cogn. Brain Res. 1, 227–240 (1993).

  29. 29.

    , , & Science 215, 1413–1415 (1982).

  30. 30.

    J. Clin. Neurophysiol. 11, 519–524 (1994).

Download references

Author information

Affiliations

  1. Department of Neurology, Center for Neuroscience, University of California, Davis, Veterans Medical Center, 150 Muir Road, Martinez, California 94553, USA

    • Robert T. Knight

Authors

  1. Search for Robert T. Knight in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/383256a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.