Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropic control of particle motion using passive surface microstructures

Abstract

IN a colloidal suspension containing particles of two different sizes, there is an attractive force between the larger particles. This attraction is due to the extra volume that becomes available to the smaller particles when the larger particles approach one another, thus increasing the entropy of the system. Entropic 'excluded-volume' effects of this type have been studied previously in colloids and emulsions, in the context of phase-separation phenomena in the bulk1–15 and at flat surfaces2,16. Here we show how similar effects can be used to position the larger particles of a binary mixture on a substrate, or to move them in a predetermined way. Our experiments demonstrate the entropically driven repulsion of a colloidal sphere (in a suspension of smaller spheres) from the edge of a step; the magnitude of the entropic barrier felt by the sphere is approximately twice its mean thermal energy. These results indicate that passive structures etched into the walls of a container create localized entropic force fields which can trap, repel or induce the controlled drift of particles. Manipulation techniques based on these effects should be useful for making the highly ordered particle arrays required for structures with photonic band gaps17,18, microelectronic mask materials19, and materials for clinical assays20

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pusey, P. N. & van Megen, W. Nature 320, 340–342 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Dinsmore, A. D., Yodh, A. G. & Pine, D. J. Phys. Rev. E 52, 4045–4057 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bartlett, P., Ottewill, R. H. & Pusey, P. N. Phys. Rev. Lett. 68, 3801–3804 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Sanyal, S., Easwar, N., Ramaswamy, S. & Sood, A. K. Europhys. Lett. 18, 107–110 (1992).

    Article  ADS  CAS  Google Scholar 

  5. van Duijneveldt, J. S., Heinen, A. W. & Lekkerkerker, H. N. W. Europhys. Lett. 21, 369–374 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Imhof, A. & Dhont, J. K. G. Phys. Rev. Lett. 75, 1662–1665 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Yasrebi, M., Shih, W. Y. & Aksay, I. A. J. Colloid Interface Sci. 142, 357–368 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Steiner, U., Meller, A. & Stavans, J. Phys. Rev. Lett. 74, 4750–4753 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Bibette, J., Roux, D. & Pouligny, B. J. Phys. II Fr. 2, 401–424 (1992).

    CAS  Google Scholar 

  10. Calderon, F. L., Biais, J. & Bibette, J. Colloids Surf. A 74, 303–309 (1993).

    Article  CAS  Google Scholar 

  11. De Hek, H. A. & Vrij, A. J. Colloid Interface Sci. 84, 409–422 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Calderon, F. L., Bibette, J. & Biais, J. Europhys. Lett. 23, 653–659 (1993).

    Article  ADS  CAS  Google Scholar 

  13. llett, S. M., Orrock, A., Poon, W. C. K. & Pusey, P. N. Phys. Rev. E 51, 1344–1352 (1995).

    Article  ADS  Google Scholar 

  14. Herzfeld, J. Acc. Chem. Res. 29, 31–37 (1996).

    Article  CAS  Google Scholar 

  15. Buitenhuis, J., Donselaar, L. N., Buining, P. A., Stroobants, A. & Lekkerkerker, H. N. W. J. Colloid Interface Sci. 175, 46–56 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Kaplan, P. D., Rouke, J. L., Yodh, A. G. & Pine, D. J. Phys. Rev. Lett. 72, 582–585 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Yablonovitch, E. J. Opt. Soc. Am. 10, 283–295 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

    MATH  Google Scholar 

  19. Murray, C. A. & Grier, D. G. Am. Sci. 83, 238–245 (1995).

    ADS  Google Scholar 

  20. Bangs, L. B. J. Clin. Immunoassay 13, 127–131 (1990).

    Google Scholar 

  21. Crocker, J. C. & Grier, D. G. Phys. Rev. Lett. 73, 352–355 (1994); J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Prieve, D. C. & Frej, N. A. Langmuir 6, 396–403 (1990).

    Article  CAS  Google Scholar 

  23. Asakura, S. & Oosawa, F. J. Polym. Sci. 33, 183–192 (1958).

    Article  ADS  CAS  Google Scholar 

  24. Vrij, A. Pure Appl. Chem. 48, 471–483 (1976).

    Article  CAS  Google Scholar 

  25. Kaplan, P. D., Faucheux, L. P. & Libchaber, A. J. Phys. Rev. Lett. 73, 2793–2796 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Sober, D. L. & Walz, J. Y. Langmuir 11, 2352–2356 (1995).

    Article  CAS  Google Scholar 

  27. Milling, A. & Biggs, S. J. Colloid Interface Sci. 170, 604–606 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Svoboda, K. & Block, S. M. Annu. Rev. Biophys. Biomolec. Struct. 23, 247–285 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinsmore, A., Yodh, A. & Pine, D. Entropic control of particle motion using passive surface microstructures. Nature 383, 239–242 (1996). https://doi.org/10.1038/383239a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing