Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TBP-associated factors are not generally required for transcriptional activation in yeast

Abstract

THE transcription factor TFIID, a central component of the eukaryotic RNA polymerase II (Pol II) transcription apparatus, comprises the TATA-binding protein (TBP) and approximately ten TBP-associated factors (TAFs)1. Although the essential role of TBP in all eukaryotic transcription has been extensively analysed in vivo and in vitro2,3, the function of the TAFs is less clear. In vitro, TAFs are dispensable for basal transcription but are required for the response to activators1. In addition, specific TAFs may act as molecular bridges between particular activators and the general transcription machinery4,5. In vivo, TAFs required for yeast6,7 and mammalian8 cell growth, but little is known about their specific transcriptional functions. Using conditional alleles created by a new double-shutoff method, we show here that TAF depletion in yeast cells can reduce transcription from some promoters lacking conventional TATA elements. However, TAT depletion has surprisingly little effect on transcriptional enhancement by several activators, indicating that TAFs are not generally required for transcriptional activation in yeast.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tjian, R. & Maniatis, T. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  2. Hernandez, N. Genes Dev. 7, 1291–1308 (1993).

    Article  CAS  Google Scholar 

  3. Struhl, K. Annu. Rev. Genet. 29, 651–674 (1995).

    Article  CAS  Google Scholar 

  4. Chen, J.-L., Attardi, L. D. Verrijzer, C. P., Yokomori, K. & Tjian, R. Cell 79, 93–105 (1994).

    Article  CAS  Google Scholar 

  5. Sauer, F., Hansen, S. K. & Tjian, R. Science 270, 1783–1788 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Reese, J. C., Apone, L., Walker, S. S., Griffin, L. A. & Green, M. R. Nature 371, 523–527 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Poon, D. et al. Proc. Natl Acad. Sci. USA 92, 8224–8228 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Wang, E. H. & Tjian, R. Science 263, 811–814 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Walker, S. S., Reese, J. C., Apone, L. M. & Green, M. R. Nature 385, 185–188 (1996).

    Article  ADS  Google Scholar 

  10. Chen, W. & Struhl, K., EMBO J. 4, 3272–3280 (1985).

    Google Scholar 

  11. lyer, V. & Struhl, K. Mol. Cell. Biol. 15, 7059–7066 (1995).

    Article  Google Scholar 

  12. Martens, J. A. & Brandl, C. J. J. Biol. Chem. 269, 15661–15667 (1994).

    CAS  PubMed  Google Scholar 

  13. Cormack, B. P., Strubin, M., Stargell, L. A. & Struhl, K. Genes Dev. 8, 1335–1343 (1994).

    Article  CAS  Google Scholar 

  14. Griggs, D. W. & Johnston, M. Proc. Natl Acad. Sci. USA 88, 8597–8601 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Arndt, K. M., Ricupero-Hovasse, S. & Winston, F. EMBO J. 14, 1490–1497 (1995).

    Article  CAS  Google Scholar 

  16. Lee, M. & Struhl, K. Mol. Cell. Biol. 15, 5461–5469 (1995).

    Article  CAS  Google Scholar 

  17. Stargell, L. A. & Struhl, K. Science 269, 75–78 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Koleske, A. J. & Young, R. A. Nature 368, 466–469 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Kim, Y.-J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  20. Workman, J. L., Taylor, I. C. A. & Kingston, R. E. Cell 64, 533–544 (1991).

    Article  CAS  Google Scholar 

  21. Koleske, A. J. & Young, R. A. Trends Biochem. Sci. 20, 113–116 (1995).

    Article  CAS  Google Scholar 

  22. Struhl, K. Cell 84, 179–182 (1996).

    Article  CAS  Google Scholar 

  23. Chatterjee, S. & Struhl, K. Nature 374, 820–822 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Klages, N. & Strubin, M. Nature 374, 822–823 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Barberis, A. et al. Cell 81, 359–368 (1995).

    Article  CAS  Google Scholar 

  26. Klein, C. & Struhl, K. Science 266, 280–282 (1994).

    Article  ADS  CAS  Google Scholar 

  27. lyer, V. & Struhl, K. Proc. Natl Acad. Sci. USA 93, 5208–5212 (1996).

    Article  ADS  Google Scholar 

  28. Balasubramanian, B., Lowry, C. V. & Zitomer, R. S. Mol. Cell. Biol. 13, 6071–6078 (1993).

    Article  CAS  Google Scholar 

  29. Bartel, B., Wunning, I. & Varshavsky, A. EMBO J. 9, 3179–3189 (1990).

    Article  CAS  Google Scholar 

  30. Ray, B. L., White, C. I. & Haber, J. E. Curr. Genet. 20, 25–31 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moqtaderi, Z., Bai, Y., Poon, D. et al. TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188–191 (1996). https://doi.org/10.1038/383188a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383188a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing