Letter | Published:

TBP-associated factors are not generally required for transcriptional activation in yeast

Nature volume 383, pages 188191 (12 September 1996) | Download Citation

Subjects

Abstract

THE transcription factor TFIID, a central component of the eukaryotic RNA polymerase II (Pol II) transcription apparatus, comprises the TATA-binding protein (TBP) and approximately ten TBP-associated factors (TAFs)1. Although the essential role of TBP in all eukaryotic transcription has been extensively analysed in vivo and in vitro2,3, the function of the TAFs is less clear. In vitro, TAFs are dispensable for basal transcription but are required for the response to activators1. In addition, specific TAFs may act as molecular bridges between particular activators and the general transcription machinery4,5. In vivo, TAFs required for yeast6,7 and mammalian8 cell growth, but little is known about their specific transcriptional functions. Using conditional alleles created by a new double-shutoff method, we show here that TAF depletion in yeast cells can reduce transcription from some promoters lacking conventional TATA elements. However, TAT depletion has surprisingly little effect on transcriptional enhancement by several activators, indicating that TAFs are not generally required for transcriptional activation in yeast.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Cell 77, 5–8 (1994).

  2. 2.

    Genes Dev. 7, 1291–1308 (1993).

  3. 3.

    Annu. Rev. Genet. 29, 651–674 (1995).

  4. 4.

    , , & Cell 79, 93–105 (1994).

  5. 5.

    , & Science 270, 1783–1788 (1995).

  6. 6.

    , , , & Nature 371, 523–527 (1994).

  7. 7.

    et al. Proc. Natl Acad. Sci. USA 92, 8224–8228 (1995).

  8. 8.

    & Science 263, 811–814 (1994).

  9. 9.

    , , & Nature 385, 185–188 (1996).

  10. 10.

    & , EMBO J. 4, 3272–3280 (1985).

  11. 11.

    & Mol. Cell. Biol. 15, 7059–7066 (1995).

  12. 12.

    & J. Biol. Chem. 269, 15661–15667 (1994).

  13. 13.

    , , & Genes Dev. 8, 1335–1343 (1994).

  14. 14.

    & Proc. Natl Acad. Sci. USA 88, 8597–8601 (1991).

  15. 15.

    , & EMBO J. 14, 1490–1497 (1995).

  16. 16.

    & Mol. Cell. Biol. 15, 5461–5469 (1995).

  17. 17.

    & Science 269, 75–78 (1995).

  18. 18.

    & Nature 368, 466–469 (1994).

  19. 19.

    , , , & Cell 77, 599–608 (1994).

  20. 20.

    , & Cell 64, 533–544 (1991).

  21. 21.

    & Trends Biochem. Sci. 20, 113–116 (1995).

  22. 22.

    Cell 84, 179–182 (1996).

  23. 23.

    & Nature 374, 820–822 (1995).

  24. 24.

    & Nature 374, 822–823 (1995).

  25. 25.

    et al. Cell 81, 359–368 (1995).

  26. 26.

    & Science 266, 280–282 (1994).

  27. 27.

    & Proc. Natl Acad. Sci. USA 93, 5208–5212 (1996).

  28. 28.

    , & Mol. Cell. Biol. 13, 6071–6078 (1993).

  29. 29.

    , & EMBO J. 9, 3179–3189 (1990).

  30. 30.

    , & Curr. Genet. 20, 25–31 (1991).

Download references

Author information

Affiliations

  1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Zarmik Moqtaderi
    •  & Kevin Struhl
  2. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232–0615, USA

    • Yu Bai
    • , David Poon
    •  & P. Anthony Weil

Authors

  1. Search for Zarmik Moqtaderi in:

  2. Search for Yu Bai in:

  3. Search for David Poon in:

  4. Search for P. Anthony Weil in:

  5. Search for Kevin Struhl in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/383188a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.