Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thalamic modulation of high-frequency oscillating potentials in auditory cortex

Abstract

PERHAPS the most widely recognized but least understood electrophysiological activity of the cerebral cortex is its characteristic electrical oscillations. Recently, there have been efforts to understand the mechanisms underlying high-frequency gamma oscillations (40 Hz) because they may coordinate sensory processing between populations of cortical cells1,2. High-resolution cortical recordings show that gamma oscillations are constrained to sensory cortex3–5, that they occur independently in auditory and somatosensory cortex4, and that they are phase-locked between primary and secondary sensory cortex5. As yet, the mechanism of their neurogenesis is unknown2. Whereas cortical neurons can produce gamma oscillations without subcortical input6–9, they may also be modulated by the thalamus10 and basal forebrain11. Here we report that the neural generator of gamma oscillations in auditory cortex seems to be intracortical, serving to synchronize interactions between the primary and secondary areas. The acoustic thalamus directly modulates these oscillations, which are inhibited by stimulation of the dorsal and ventral divisions of the medial geniculate nucleus (MGd and MGv) and evoked by stimulation of the adjacent posterior intralaminar nucleus (PIL).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Basar, E. & Bullock, T. H. Induced Rhythms in the Brain (Birkhäuser, Boston, 1992).

    Book  Google Scholar 

  2. Singer, W. in Large-Scale Neuronal Theories of the Brain (eds Koch, C. & Davis, J. L.) 201–237 (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  3. Franowicz, M. N. & Barth, D. S. J. Neurophysiol. 74, 96–111 (1995).

    Article  CAS  Google Scholar 

  4. MacDonald, K. D. & Barth, D. S. Brain Res. 694, 1–12 (1995).

    Article  CAS  Google Scholar 

  5. MacDonald, K. D., Brett, B. & Barth, D. S. J. Neurophysiol. (in the press).

  6. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Nature 373, 612–615 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Llinás, R. R., Grace, A. & Yarom, Y. Proc. Natl Acad. Sci. U.S.A. 88, 897–901 (1991).

    Article  ADS  Google Scholar 

  8. Silva, L. R., Amitai, Y. & Connors, B. W. Science 25, 432–435 (1991).

    Article  ADS  Google Scholar 

  9. Gutfreund, Y., Yarom, Y. & Segev, I. J. Physiol (Lond.) 483, 621–640 (1995).

    Article  CAS  Google Scholar 

  10. Steriade, M., Contreras, D., Amzica, F. & Timofeev, I. J. Neurosci. 16, 2788–2808 (1996).

    Article  CAS  Google Scholar 

  11. Metherate, R., Cox, C. L. & Ashe, J. H. J. Neurosci. 12, 4701–4711 (1992).

    Article  CAS  Google Scholar 

  12. Brett, B., Di, S., Watkins, L. & Barth, D. S. Brain Res. 647, 65–75 (1994).

    Article  CAS  Google Scholar 

  13. Patterson, H. thesis Univ. Boston (1977).

  14. Arnault, P. & Roger, M. J. Comp. Neurol. 258, 463–476 (1987).

    Article  CAS  Google Scholar 

  15. Arnault, P. & Roger, M. J. Comp. Neurol. 302, 110–123 (1990).

    Article  CAS  Google Scholar 

  16. Ledoux, J. E., Ruggiero, D. A., Forest, R., Stornetta, R. & Reis, D. J. J. Comp. Neurol. 264, 123–146 (1987).

    Article  CAS  Google Scholar 

  17. Steriade, M., Dossi, R. C. & Contreras, D. Neuroscience 56, 1–9 (1993).

    Article  CAS  Google Scholar 

  18. Morest, D. K. & Winer, J. A. Adv. Anat. Embryol. Cell Biol. 97, 1–94 (1986).

    Article  CAS  Google Scholar 

  19. LeDoux, J. E., Ruggiero, D. A. & Reis, D. J. J. Comp. Neurol. 242, 182–213 (1985).

    Article  CAS  Google Scholar 

  20. Steriade, M., Amzica, F. & Contreras, D. J. Neurosci. 16, 392–417 (1996).

    Article  CAS  Google Scholar 

  21. Kolb, B. in The Cerebral Cortex of the Rat (eds Kolb, B. & Tees, R. C.) 21–34 (MIT Press, Cambridge, MA, 1990).

    Google Scholar 

  22. Di, S. & Barth, D. S. J. Neurophysiol. 68, 425–431 (1992).

    Article  CAS  Google Scholar 

  23. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, D., MacDonald, K. Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383, 78–81 (1996). https://doi.org/10.1038/383078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing