Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Localized excitations in a vertically vibrated granular layer

Abstract

THE formation of two-dimensional patterns in biological, chemical and physical systems is often described by the nonlinear interaction of plane waves1. An alternative approach views patterns as ensembles of interacting localized objects, analogous to the assembly of crystals from atoms. For macroscopic pattern-forming systems, one objection to the latter approach is that no 'atoms' exist; however spatially localized excitations can play an analogous role. One-dimensional localized states are observed in many systems—for example, solitary waves in water2–4 and optical fibres5—and can organize into simple patterns6,7. But few examples of two-dimensional localized states are known, and these tend to be unstable and/or do not show simple pattern-forming interactions8–11. Here we report the observation of stable, two-dimensional localized excitations zin a vibrating layer of sand. These excitations, which we term 'oscillons', have a propensity to assemble into 'molecular' and 'crystalline' structures. Our experimental results, together with the observation of similar localized excitations in model differential equations12–14, indicate a crucial, cooperative role for hysteresis and dissipation in the formation of oscillons, and suggest that similar behaviour may occur in continuous media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cross, M. C. & Hohenberg, P. C. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Russell, J. S. Report on Waves 311–390 (Murray, London, 1844).

    Google Scholar 

  3. Wu, J., Keolian, R. & Rudnick, I. Phys. Rev. Lett. 52, 1421–1424 (1984).

    Article  ADS  Google Scholar 

  4. Osborne, A. R. & Burch, T. L. Science 208, 451–460 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  6. Melo, F. & Douady, S. Phys. Rev. Lett. 71, 3283–3286 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Balmforth, N. J. Annu. Rev. Fluid Mech. 27, 337–373 (1995).

    Article  ADS  Google Scholar 

  8. Dennin, M., Ahlers, G. & Cannell, D. S. Science 272, 388–390 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Joets, A. & Ribotta, R. Phys. Rev. Lett. 21, 2164–2167 (1988).

    Article  ADS  Google Scholar 

  10. Lerman, K., Bodenschatz, E., Cannell, D. S. & Ahlers, G. Phys. Rev. Lett. 70, 3572–3575 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Lioubashevski, O., Arbell, H. & Fineberg, J. Phys. Rev. Lett. 76, 3959–3962 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Thual, O. & Fauve, S. J. Phys., Paris 49, 1829–1833 (1988).

    Article  Google Scholar 

  13. Deissler, R. J. & Brand, H. R. Phys. Rev. A 44, R3411–R3414 (1991).

    Google Scholar 

  14. Aranson, I. S., Gorshkov, K. A., Lomov, A. S. & Rabinovich, M. I. Physica D 43, 435–453 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  15. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Physics Today 49(4), 32–38 (1996).

    Article  Google Scholar 

  16. Evesque, P. & Rajchenbach, J. Phys. Rev. Lett. 50, 44–47 (1989).

    Article  ADS  Google Scholar 

  17. Laroche, C., Douady, S. & Fauve, S. J. Phys., Paris 50, 699–702 (1989).

    Article  Google Scholar 

  18. Knight, J. B., Jaeger, H. M. & Nagel, S. R. Phys. Rev. Lett. 70, 3728–3730 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Pak, H. K. & Behringer, R. P. Nature 371, 231–233 (1994).

    Article  ADS  Google Scholar 

  20. Fauve, S., Douady, S. & Laroche, C. J. Phys. Colloque, Paris 50 C3, 187–191 (1989).

    Google Scholar 

  21. Melo, F., Umbanhowar, P. & Swinney, H. L. Phys. Rev. Lett. 72, 172–175 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Melo, F., Umbanhowar, P. & Swinney, H. L. Phys. Rev. Lett. 75, 3838–3841 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Pak, H. K., Van Doorn, E. & Behringer, R. P. Phys. Rev. Lett. 74, 4643–4646 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Reynolds, O. Phil. Mag. 20, 469–481 (1885).

    Article  Google Scholar 

  25. Edwards, W. S. & Fauve, S. J. Fluid Mech. 278, 123–148 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umbanhowar, P., Melo, F. & Swinney, H. Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996). https://doi.org/10.1038/382793a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382793a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing