Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7–δ

Abstract

THE magnetic vortex lattice of copper oxide superconductors in the mixed (field-penetrated) state 'liquefies'1,2 on increasing the temperature T or the external magnetic field H, giving rise to an ohmic resistivity well below the fluctuation-dominated crossover to the normal state at the upper critical field Hc2(T). Theoretical work suggests that in clean materials this melting is a first-order phase transition3; features in the resistivity4–6 and magnetization7–10, as well as results from muon spin rotation11 and neutron-diffraction work12, have been cited to support this hypothesis. A calorimetric measurement of a latent heat provides the most definitive proof of the occurrence of a first-order transition, but such measurements require very high sensitivity. Here we report calorimetric measurements on an untwinned single crystal of YBa2Cu3O7–δ that have sufficient precision to clearly resolve the latent heat. The value obtained, 0.45kBT per vortex per superconducting layer (where kB is the Boltzmann constant), is consistent with that inferred from magnetization data using the Clapeyron equation. This result is compelling evidence for a first-order transition at a well defined phase boundary Hm(T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nelson, D. R. Phys. Rev. Lett. 60, 1973–1976 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Phys. Rev. B. 43, 130–159 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Hetzel, R. E., Sudbø, A. & Huse, D. A. Phys. Rev. Lett. 69, 518–521 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Safar, H. et al. Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Kwok, W. K. et al. Phys. Rev. Lett. 69, 3370–3373 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Kwok, W. K. et al. Phys. Rev. Lett. 72, 1092–1095 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Pastoriza, H., Goffman, M. F., Arribére, A. & de la Cruz, F. Phys. Rev. Lett. 72, 2951–2954 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Zeldov, E. et al. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Liang, R., Bonn, D. A. & Hardy, W. N. Phys. Rev. Lett. 76, 835–838 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Welp, U., Fendrich, J. A., Kwok, W. K., Crabtree, G. W. & Veal, B. W. Phys. Rev. Lett. 76, 4809–4812 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lee, S. L. et al. Phys. Rev. Lett. 71, 3862–3865 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Cubitt, R. et al. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Jiang, W., Yeh, N. C., Reed, D. S., Kriplani, U. & Holtzberg, F. Phys. Rev. Lett. 74, 1438–1441 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Farrell, D. E. et al. Phys. Rev. B 53, 11807–11816 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Schilling, A. & Jeandupeux, O. Phys. Rev. B 52, 9714–9723 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Morozov, N., Zeldov, E., Majer, D. & Konczykowski, M. Phys. Rev. B 54, 3784 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, A., Fisher, R., Phillips, N. et al. Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7–δ. Nature 382, 791–793 (1996). https://doi.org/10.1038/382791a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382791a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing