Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional relevance of cross-modal plasticity in blind humans

Abstract

Functional imaging studies of people who were blind from an early age have revealed that their primary visual cortex can be activated by Braille reading and other tactile discrimination tasks1. Other studies have also shown that visual cortical areas can be activated by somatosensory input in blind subjects but not those with sight2,3,4,5,6,7. The significance of this cross-modal plasticity is unclear, however, as it is not known whether the visual cortex can process somatosensory information in a functionally relevant way. To address this issue, we used transcranial magnetic stimulation to disrupt the function of different cortical areas in people who were blind from an early age as they identified Braille or embossed Roman letters. Transient stimulation of the occipital (visual) cortex induced errors in both tasks and distorted the tactile perceptions of blind subjects. In contrast, occipital stimulation had no effect on tactile performance in normal-sighted subjects, whereas similar stimulation is known to disrupt their visual performance. We conclude that blindness from an early age can cause the visual cortex to be recruited to a role in somatosensory processing. We propose that this cross-modal plasticity may account in part for the superior tactile perceptual abilities of blind subjects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: a, Schematic representation of the top of the head showing the scalp positions stimulated.
Figure 2: Error rates (mean ± se.) for stimulation of different positions in the four groups studied.

References

  1. 1

    Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Pons, T. Novel sensations in the congenitally blind. Nature 380, 479–480 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Wanet-Defalque, M.-C. et al. High metabolic activity in the visual cortex of early blind subjects. Brain Res. 446, 369–373 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Uhl, F., Franzen, P., Lindinger, G., Lang, W. & Deecke, L. On the functionality of the visually deprived occipital cortex in early blind persons. Neurosci. Lett. 124, 256–259 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Uhl, F., Franzen, P., Podreka, I., Steiner, M. & Deecke, L. Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci. Lett. 150, 162–164 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Kujala, T. et al. Visual cortex activation in blind subjects during sound discrimination. Neurosci. Lett. 183, 143–146 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    CAS  Article  Google Scholar 

  8. 8

    Penfield, W. & Roberts, L. (eds) Speech and Brain Mechanisms (Princeton Univ. Press, 1959).

    Google Scholar 

  9. 9

    Ojemann, G. A. Brain organization for language from the perspective of electrical stimulation mapping. Behav. Brain. Sci. 6, 190–206 (1983).

    Google Scholar 

  10. 10

    Pascual-Leone, A., Gates, J. R. & Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41, 697–702 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Cohen, L. G., Bandinelli, S., Sato, S., Kufta, C. & Hallett, M. Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysol. 81, 366–376 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Pascual-Leone, A., Wassermann, E., Grafman, I. & Hallett, M. The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp. Brain Res. 107, 479–485 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Luders, H. et al.in Surgical Treatment of the Epilepsies (ed. Engel, J.) 297–321 (Raven, New York, 1987).

    Google Scholar 

  14. 14

    Henderson, D. C., Evans, J. R. & Dobelle, W. H. The relationship between stimulus parameters and phosphene/brightness during stimulation of human visual cortex. Trans. Am. Soc. Artif. Intern. Organs 25, 367–371 (1979).

    CAS  Article  Google Scholar 

  15. 15

    Bridley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.) 196, 479–493 (1968).

    Article  Google Scholar 

  16. 16

    Barker, A. T., Jalinous, R. & Freeston, I. L. Noninvasive magnetic stimulation of human motor cortex. Lancet (i), 1106–1107 (1985).

    Article  Google Scholar 

  17. 17

    Amassian, V. E. et al. Suppression of visual perception by magnetic oil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol. 74, 458–462 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Epstein, C. M. & Zangaladze, A. Magnetic coil suppression of extrafoveal visual perception using disappearance targets. J. Clin. Neurophysiol. 13, 242–246 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Epstein, C. M., Verson, R. & Zangaladze, A. Magnetic coil suppression of visual perception at an extracalcarine site. J. Clin. Neurophysiol. 13, 247–252 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Rushton, D. N. & Bridley, G. S. in Frontiers in Visual Science (eds Cool, S. J. & Smith, E. L.) 574–593 (Springer, New York, 1978).

    Book  Google Scholar 

  21. 21

    Schmidt, E. M. et al. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119, 507–522 (1996).

    Article  Google Scholar 

  22. 22

    Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).

    CAS  Article  Google Scholar 

  23. 23

    Cohen, L. G. et al. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol. 75, 350–357 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Homan, R. W., Herman, J. & Purdy, P. Cerebral location of international 10-20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66, 376–382 (1987).

    CAS  Article  Google Scholar 

  25. 25

    Pascual-Leone, A. et al. Modulation of motor cortical outputs to the reading hand of braille readers. Ann. Neurol. 34, 33–37 (1993).

    CAS  Article  Google Scholar 

  26. 26

    Wassermann, E. M. Risk and safety in repetitive transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol.(in the press).

  27. 27

    Chen, R. et al. Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr. Clin. Neurophysiol.(in the press).

  28. 28

    McCullagh, P. & Nelder, J. A. (eds) Generalized Linear Models (Chapman and Hall, London, 1989).

    Book  Google Scholar 

  29. 29

    Homser, D. W. & Lemeshow, S. (eds) Applied Logistic Regression (Wiley, New York, 1989).

    Google Scholar 

  30. 30

    Anderson, J. A. Separate sample logistic discrimination. Biometrika 59, 19–35 (1972).

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank our subjects for their cooperation; G. Dold and N. Dang for engineering support; E. Corthout, Ulf Ziemann, J. Classen and J. Grafman for comments; and B. J. Hessie for editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leonardo G. Cohen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohen, L., Celnik, P., Pascual-Leone, A. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997). https://doi.org/10.1038/38278

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing