Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topology and reorganization of a human TFIID–promoter complex

Abstract

TRANSCRIPTION factor TFIID is a multiprotein complex composed of a TATA-box-binding subunit, TBP, and several tightly associated factors (TAFs)1,2. Human TFIID–promoter interactions are restricted to the TATA-box region on most core promoters3,4 but extend over a large promoter region downstream of the TATA box and the transcription start site on the Ad2ML promoter3–6. TFIID downstream interactions are thought to be functionally relevant because they can be induced by transcriptional activators7–10, which in some cases requires TFIIA9,10, result in stabilization of the TFIID–promoter complex9,10, and correlate with increased recruitment of the remaining general transcription factors8,10. Here we examine the topological organization of human TFIID complexes bound to the Ad2ML promoter. Our data provide insight into the relative disposition of DNA and several TFIID subunits, as well as evidence for DNA wrapping by TFIID, and suggest a direct role of TFIIA in the stable positioning of promoter DNA relative to TAFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roeder, R. G. Trends biochem. Sci. 16, 402–408 (1991).

    Article  CAS  Google Scholar 

  2. Burley, S. K. & Roeder, R. G. A. Rev. Biochem. 65, 769–799 (1996).

    Article  CAS  Google Scholar 

  3. Nakajima, N., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 8, 4028–4040 (1988).

    Article  CAS  Google Scholar 

  4. Chiang, C.-M. et al. EMBO J. 12, 2749–2762 (1993).

    Article  CAS  Google Scholar 

  5. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  6. Zhou, Q., Lieberman, P. M., Boyer, T. G. & Berk, A. J. Genes. Dev. 6, 1964–1974 (1992).

    Article  CAS  Google Scholar 

  7. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  8. Horikoshi, M. et al. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  9. Lieberman, P. M. & Berk, A. J. Genes Dev. 8, 995–1006 (1994).

    Article  CAS  Google Scholar 

  10. Chi, T., Lieberman, P. M., Ellwood, K. & Carey, M. Nature 377, 254–257 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Bartholomew, B., Kassavetis, G. A., Braun, B. R. & Geiduschek, E. P. EMBO J. 9, 2197–2205 (1990).

    Article  CAS  Google Scholar 

  12. Bartholomew, B., Kassavetis, G. A., & Geiduschek, E. P. Molec. cell. Biol. 11, 5181–5189 (1991).

    Article  CAS  Google Scholar 

  13. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Nature 365, 512–520 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Kim, J. L., Nikolov, D. B. & Burley, S. K. Nature 365, 520–527 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Nikolov, D. B. et al. Proc. natn. Acad. Sci. U.S.A. 93, 4956–4961 (1996).

    Article  Google Scholar 

  16. Starr, D. B. & Hawley, D. K. Cell 67, 1231–1240 (1991).

    Article  CAS  Google Scholar 

  17. Lee, D. K., Horikoshi, M. & Roeder, R. G. Cell 67, 1241–1250 (1991).

    Article  CAS  Google Scholar 

  18. Verrijzer, C. P., Yokomori, K., Chen, J. L. & Tjian, R. Science 264, 933–941 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Coulombe, B., Li, J. & Greenblatt, J. J. biol. Chem. 269, 19962–19967 (1994).

    CAS  Google Scholar 

  20. Hoffmann, A. et al. Nature 380, 356–359 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Xie, X. et al. Nature 380, 316–322 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Lorch, Y. & Kornberg, R. D. Molec. cell. Biol. 13, 1872–1875 (1993).

    Article  CAS  Google Scholar 

  23. Lee, S. & Hahn, S. Nature 376, 609–612 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Nikolov, D. B. et al. Nature 377, 119–128 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Bartholomew, B., Braun, B. R., Kassavetis, G. A. & Geiduschek, E. P. J. biol. Chem. 269, 18090–18095 (1994).

    CAS  PubMed  Google Scholar 

  26. Chiang, C.-M. & Roeder, R. G. Pept. Res. 6, 62–64 (1993).

    CAS  PubMed  Google Scholar 

  27. Ge, H., Martinez, E., Chiang, C.-M. & Roeder, R. G. Meth. Enzym. (in the press).

  28. Tabuchi, H., Handa, H. & Hirose, S. Biochem. biophys. Res. Commun. 192, 1432–1438 (1993).

    Article  CAS  Google Scholar 

  29. Mizutani, M., Ura, K. & Hirose, S. Nucleic Acids Res. 19, 2907–2911 (1991).

    Article  CAS  Google Scholar 

  30. Hirose, S. & Suzuki, Y. Proc. natn. Acad. Sci. U.S.A. 85, 718–722 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelgeschläger,, T., Chiang, CM. & Roeder, R. Topology and reorganization of a human TFIID–promoter complex. Nature 382, 735–738 (1996). https://doi.org/10.1038/382735a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382735a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing