Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bite-force estimation for Tyrannosaurus rex from tooth-marked bones

Abstract

WHETHER tyrannosaurs occupied predatory or scavenging niches has been debated for nearly a century1–5. Palaeontologists have turned to the study of dental morphology to address this question, but the results have been highly disparate. Some contend that the tyrannosaur dentition was very strong and well suited for engaging and killing herbivorous dinosaurs6,7. Others posit that tyrannosaurs ate carrion, because their teeth and/or jaws would fail during struggles with prey2,3. The discovery of skeletal remains with bite marks from Tyrannosaurus rex8makes it possible to estimate, through indentation simulations on bovine ilia, the bite forces produced by T. rexduring feeding. The estimates (6,410 to 13,400 N) rival the largest bite forces determined for any taxon to date and suggest that T. rex had very strong, impact-resistant teeth. Although these data do not prove that T. rex was predominantly predacious, they indicate that its dentition could probably withstand the stresses associated with prey capture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lambe, L. M. Mem. geol. Surv. Can. 100, 1–84 (1917).

    Google Scholar 

  2. 2

    Halstead, L. B. & Halstead, J. Dinosaurs (Blandford, Poole, UK, 1981).

    Google Scholar 

  3. 3

    Barsbold, R. Sov. Sov.-Mong. Paleontol. Eksped. Trudy 19, 1–120 (1983).

    Google Scholar 

  4. 4

    Molnar, R. E. & Farlow, J. O. in The Dinosauria (eds Weishampel, D., Dodson, P. & Osmolska, H.) 210–224 (Univ. California Press, Berkeley, 1990).

    Google Scholar 

  5. 5

    Horner, J. R. & Lessem, D. The Complete T. rex (Simon and Schuster, New York, 1993).

    Google Scholar 

  6. 6

    Farlow, J. O., Brinkman, D. L., Abler, D. L. & Currie, P. J. Mod. Geol. 16, 161–198 (1991).

    Google Scholar 

  7. 7

    Abler, W. L. Paleobiology 18, 161–183 (1992).

    Article  Google Scholar 

  8. 8

    Erickson, G. M. & Olson, K. H. J. Vert. Paleont. 16, 175–178 (1996).

    Article  Google Scholar 

  9. 9

    Ström, D. & Holm, S. Archs Oral Biol. 37, 997–1006 (1992).

    Article  Google Scholar 

  10. 10

    Van Eijden, T. M. G. J. Archs Oral Biol. 36, 535–539 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Thomason, J. J. Can. J. Zool. 69, 2326–2333 (1991).

    Article  Google Scholar 

  12. 12

    Snodgrass, J. M. & Gilbert, P. W. in Sharks, Skates, and Rays (eds Gilbert, P. W., Mathewson, R. F. & Rall, D. P.) 331–337 (Johns Hopkins Univ. Press, Baltimore, 1967).

    Google Scholar 

  13. 13

    Lucas, P. W., Peters, C. R. & Arrandale, S. R. Am. J. phys. Anthrop. 94, 365–378 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Paul, G. Predatory Dinosaurs of the World (Simon and Schuster, New York, 1988).

    Google Scholar 

  15. 15

    Edmund, A. G. Contrib. Life Sci. Div. R. Ont. Mus. 52, 1–190 (1960).

    Google Scholar 

  16. 16

    Grenard, S. Handbook of Alligators and Crocodilians (Krieger, Malabar, 1991).

    Google Scholar 

  17. 17

    Dauphin Y. Palaeontographica A 203, 171–184 (1988).

    Google Scholar 

  18. 18

    Erickson, G. M. J. Vert. Paleont. Abstr. 11, 27 (1991).

    Google Scholar 

  19. 19

    Simpson, G. G. Why and How: Some Problems and Methods in Historical Biology (Pergamon, Oxford, 1980).

    Google Scholar 

  20. 20

    Erickson, G. M. Copeia 1996, 739–743 (1996).

    Article  Google Scholar 

  21. 21

    Alexander, R. M. Sci. Prog. 67, 109–130 (1981).

    CAS  PubMed  Google Scholar 

  22. 22

    McGinnis, H. J. Carnegie's Dinosaurs (The Board of Trustees, Carnegie Institute, Pittsburgh, 1982).

    Google Scholar 

  23. 23

    Tanke, D. H. & Currie, P. J. J. Vert. Paleont. Abstr. 15, 55 (1995).

    Google Scholar 

  24. 24

    Jacobsen, A. R. J. Vert. Paleont. Abstr. 15, 37 (1995).

    Article  Google Scholar 

  25. 25

    Currie, P. J. & Jacobsen, A. R. Can. J. Earth. Sci. 32, 922–925 (1995).

    ADS  Article  Google Scholar 

  26. 26

    Francillon-Vieillot, H. et al. in Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) 471–530 (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  27. 27

    Greaves, W. S. in Functional Morphology in Vertebrate Palaeontology (ed. Thomason, J. J.) 99–115 (Cambridge Univ. Press, 1995).

    Google Scholar 

  28. 28

    Carter, D. R. & Hayes, W. C. Science 194, 1174–1176 (1976).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Melvin, J. W., Fuller, P. M., Daniel, R. P. & Pavliscak, G. M. Soc. Auto. Engng. Publs. No. 690477 (Soc. Auto. Engng, Warrendale, 1969).

  30. 30

    Sinclair, A. G. & Alexander, R. M. J. Zool. 213, 107–115 (1987).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erickson, G., Kirk, S., Su, J. et al. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature 382, 706–708 (1996). https://doi.org/10.1038/382706a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing