Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lasing from conjugated-polymer microcavities

Abstract

FOLLOWING the discovery1 of electroluminescence in poly(p-phenylenevinylene) (PPV), considerable effort has been directed towards the realization of optoelectronic devices based on semiconducting conjugated polymers of this type2–6. But the viability of these materials for such applications depends critically on the nature of the photoexcited states—in particular, whether they are predominantly non-emitting interchain species7–9 or emitting intrachain species10. One way to study this fundamental issue is in a device structure known as a microcavity11, which offers the possibility of using quantum electrodynamic effects to alter (and hence probe the nature of) spontaneous and stimulated emission in these materials12–17. Here we make use of such a structure to demonstrate optically driven laser activity in devices based on solid films of PPV. This demonstration of lasing provides direct support for a model10 in which the main photoexcitation in PPV is an emissive intrachain species, and opens the possibility of electrically driven polymer-based lasers.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    ADS  CAS  Article  Google Scholar 

  2. Burn, P. L. et al. Nature 356, 47–49 (1992).

    ADS  CAS  Article  Google Scholar 

  3. Gustafsson, G. et al. Nature 357, 477–479 (1992).

    ADS  CAS  Article  Google Scholar 

  4. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. & Holmes, A. B. Nature 365, 628–630 (1993).

    ADS  CAS  Article  Google Scholar 

  5. Berggren, M. et al. Nature 372, 444–446 (1994).

    ADS  CAS  Article  Google Scholar 

  6. Greenham, N. C. & Friend, R. H. in Solid State Physics 49 (eds Ehrenreich, H. & Spaepen, F. A.) 2–150 (Academic, San Diego, 1995).

    Google Scholar 

  7. Yan, M., Rothberg, L., Hsieh, B. R. & Alfano, R. R. Phys. Rev. B 49, 9419–9422 (1994).

    ADS  CAS  Article  Google Scholar 

  8. Yan, M., Rothberg, L. J., Papadimitrakopolous, F., Galvin, M. E. & Miller, T. M. Phys. Rev. Lett. 72, 1104–1107 (1994).

    ADS  CAS  Article  Google Scholar 

  9. Yan, M., Rothberg, L. J., Kwock, E. W. & Miller, T. M. Phys. Rev. Lett. 75, 1992–1995 (1995).

    ADS  CAS  Article  Google Scholar 

  10. Harrison, N. T., Hayes, G. R., Phillips, R. T. & Friend, R. H. Phys. Rev. Lett. (in the press).

  11. Yamamoto, Y., Machida, S. & Björk, G. Opt. Quantum Electronics 24, S215–S243 (1992).

    CAS  Article  Google Scholar 

  12. Dodabalapur, A., Rothberg, L. J., Miller, T. M. & Kwock, E. W. Appl. Phys. Lett. 64, 2486–2488 (1994).

    ADS  CAS  Article  Google Scholar 

  13. Tsutsui, T., Takada, N., Saito, S. & Ogino, E. Appl. Phys. Lett. 65, 1868–1870 (1994).

    ADS  CAS  Article  Google Scholar 

  14. Lemmer, U. et al. Appl. Phys. Lett. 66, 1301–1303 (1995).

    ADS  CAS  Article  Google Scholar 

  15. Wittmann, H. F. et al. Adv. Mater. 7, 541–544 (1995).

    CAS  Article  Google Scholar 

  16. Fisher, T. A. et al. Appl. Phys. Lett. 67, 1355–1357 (1995).

    ADS  CAS  Article  Google Scholar 

  17. Grüner, J., Cacialli, F. & Friend, R. H. J. Appl. Phys. 80, 207–215 (1996).

    ADS  Article  Google Scholar 

  18. Greenham, N. C. et al. Chem. Phys. Lett. 241, 89–96 (1995).

    ADS  CAS  Article  Google Scholar 

  19. Hsu, J. W. P., Yan, M., Jedju, T. M., Rothberg, L. J. & Hsieh, B. R. Phys. Rev. B 49, 712–715 (1994).

    ADS  CAS  Article  Google Scholar 

  20. Harvey, E. J. thesis, Univ. Cambridge (1995).

  21. Moses, D. Appl. Phys. Lett. 60, 3215–3216 (1992).

    ADS  CAS  Article  Google Scholar 

  22. Hide, F., Schwartz, B. J., Diaz-Garcia, M. A. & Heeger, A. J. Chem. Phys. Lett. 256, 424–430 (1996).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tessler, N., Denton, G. & Friend, R. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996). https://doi.org/10.1038/382695a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382695a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing