Abstract
PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2—4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1–10 nm in size6–10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures
Nature Communications Open Access 15 August 2022
-
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly
Nature Communications Open Access 03 June 2022
-
Comprehensive view of microscopic interactions between DNA-coated colloids
Nature Communications Open Access 28 April 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Alivisatos, A. P. Science 271, 933–937 (1996).
Bawendi, M. G., Steigerwald, M. L. & Brus, L. E. Annu. Rev. Phys. Chem 41, 477–496 (1990).
Weller, H. Angew. Chem. Int. Edn. Engl. 32, 41–53 (1993).
Tolbert, S. H. & Alivisatos, A. P. Annu. Rev. Phys. Chem. 46, 595–625 (1995).
Waugh, F. R. et al. Phys. Rev. Lett. 75, 705–708 (1995).
Murray, C. B., Norris, D. J. & Bawendi, M. G. J. Am. Chem. Soc. 115, 8706–8715 (1993).
Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R. & Brus, L. E. J. Phys. Chem. 97, 1224–1230 (1993).
Guzelian, A. A. et al. J. Phys. Chem. 100, 7212–7219 (1996).
Schmid, G. Chem. Rev. 92, 1709–1727 (1992).
Haneda, K. Can. J. Phys. 65, 1233–1241 (1987).
Spanhel, L., Weller, H. & Henglein, A. J. Am. Chem. Soc. 109, 6632–6635 (1987).
Gopidas, K. R., Bohorquez, M. & Kamat, P. V. J. Phys. Chem. 94, 6435–6440 (1990).
Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).
Lawless, D., Kapoor, S. & Meisel, D. J. Phys. Chem. 99, 10329–10335 (1995).
Pag. X. et al. Angew. Chem. (submitted).
Peschel, S. & Schmid, G. Angew. Chem. Int. Edn. Engl. 34, 1442–1443 (1995).
Whetten, R. L. et al. Adv. Mater. 8, 428–433 (1996).
Andres, R. P. et al. Science 272, 1323–1325 (1996).
Klein, D. L., McEuen, P. L., Bowen-Katari, J. E., Roth, R., Alivisatos, A. P. Appl. Phys. Lett. 68, 2574–2576 (1996).
Covin, V. L., Goldstein, A. N., Alivisatos, A. P. J. Am. Chem. Soc. 114, 5221–5230 (1992).
Fendler, J. H., Meldrum, F. C. Adv. Mater. 7, 607–632 (1995).
Peng, X. et al. J. Phys. Chem. 96, 3412–3416 (1992).
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Science 270, 1335–1338 (1995).
Vossmeyer, T. et al. Science 267, 1476–1479 (1995).
Herron, N., Calabrese, J. C., Farneth, W. E. & Wang, Y. Science 259, 1426–1428 (1993).
Bentzon, M. D., van Wonterghem, J., Morup, S., Tholen, A. & Koch, C. J. W. Phil. Mag. B 60, 169–178 (1989).
Seeman, N. C. Mater. Res. Soc. Symp. Proc. 292, 123–135 (1993).
Niemeyer, C. M., Sano, T., Smith, C. L. & Cantor, C. R. Nucleic. Acids Res. 22, 5530–5539 (1994).
Zuckermann, R. N., Corey, D. R. & Schultz, P. G. Nucleic. Acids Res. 15, 5305–5321 (1987).
Maniatis, T., Frisch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY, 1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Alivisatos, A., Johnsson, K., Peng, X. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996). https://doi.org/10.1038/382609a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/382609a0
This article is cited by
-
Gold nanoparticle dimer–based immunochromatography for in situ ultrasensitive detection of porcine epidemic diarrhea virus
Microchimica Acta (2023)
-
Comprehensive view of microscopic interactions between DNA-coated colloids
Nature Communications (2022)
-
Multiscale hierarchical structures from a nanocluster mesophase
Nature Materials (2022)
-
Self-assembled inorganic chiral superstructures
Nature Reviews Chemistry (2022)
-
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly
Nature Communications (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.