A DNA-based method for rationally assembling nanoparticles into macroscopic materials

Abstract

COLLOIDAL particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties1–4 that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectro-scopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods2–4. A great deal of control can now be exercised over the chemical composition, size and polydis-persity1,2 of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligo-nucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schmid, G. (ed.) Clusters and Colloids (VCH, Weinheim, 1994).

  2. 2

    Hayat, M. A. (ed.) Colloidal Gold: Principles, Methods, and Applications (Academic, San Diego, 1991).

  3. 3

    Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. J. Cell Biol. 126, 863–876 (1994).

  4. 4

    Creighton, J. A., Blatchford, C. G. & Albrecht, M. G. J. chem. Soc. Faraday II 75, 790–798 (1979).

  5. 5

    Brust, M., Bethell, D., Schiffrin, D. J. & Kiely, C. J. Adv. Mater. 7, 795–797 (1995).

  6. 6

    Dubois, L. H. & Nuzzo, R. G. A. Rev. phys. Chem. 43, 437–463 (1992).

  7. 7

    Bain, C. D. & Whitesides, G. M. Angew. Chem. int. Edn. engl. 28, 506–512 (1989).

  8. 8

    Shekhtman, E. M., Wasserman, S. A., Cozzarelli, N. R. & Solomon, M. J. New J. Chem. 17, 757–763 (1993).

  9. 9

    Shaw, S. Y. & Wang, J. C. Science 260, 533–536 (1993).

  10. 10

    Herrlein, M. K., Nelson, J. S. & Letsinger, R. L. J. Am. Chem. Soc. 117, 10151–10152 (1995).

  11. 11

    Chen, J. H. & Seeman, N. C. Nature 350, 631–633 (1991).

  12. 12

    Smith, F. W. & Feigon, J. Nature 356, 164–168 (1992).

  13. 13

    Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. Biochemistry 32, 1899–1904 (1993).

  14. 14

    Chen, L. Q., Cai, L., Zhang, X. H. & Rich, A. Biochemistry 33, 13540–13546 (1994).

  15. 15

    Marsh, T. C., Vesenka, J. & Henderson, E. Nucleic Acids Res. 23, 696–700 (1995).

  16. 16

    Mirkin, S. M. & Frankkamenetskii, M. D. A. Rev. Biophys. biomolec. Struct. 23, 541–576 (1994).

  17. 17

    Wells, R. D. J. biol. Chem. 263, 1095–1098 (1988).

  18. 18

    Wang, Y., Mueller, J. E., Kemper, B. & Seeman, N. C. Biochemistry 30, 5667–5674 (1991).

  19. 19

    Seeman, N. C. et al. New J. Chem. 17, 739–755 (1993).

  20. 20

    Grabar, K. C., Freeman, R. G., Hommer, M. B. & Natan, M. J. Analyt. Chem. 67, 735–743 (1995).

  21. 21

    Mucic, R. C., Herrlein, M. K., Mirkin, C. A. & Letsinger, R. L. J. chem. Soc., chem. Commun. 555–557 (1996).

  22. 22

    Linnert, T., Mulvaney, P. & Henglein, A. J. phys. Chem. 97, 679–682 (1993).

  23. 23

    Herron, N., Wang, Y. & Eckert, H. J. Am. chem. Soc. 112, 1322–1326 (1990).

  24. 24

    Colvin, V. L., Goldstein, A. N. & Alivisatos, A. P. J. Am. chem. Soc. 114, 5221–5230 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.