Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts

Abstract

Functional nuclei and mitotic spindles are shown to assemble around DNA-coated beads incubated in Xenopus egg extracts. Bipolar spindles assemble in the absence of centrosomes and kinetochores, indicating that bipolarity is an intrinsic property of microtubules assembling around chromatin in a mitotic cytoplasm. Microtubules nucleated at dispersed sites with random polarity rearrange into two arrays of uniform polarity. Spindle-pole formation requires cytoplasmic dynein-dependent translocation of microtubules across one another. It is proposed that spindles form in the absence of centrosomes by motor-dependent sorting of microtubules according to their polarity.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Telzer, B. R. & Haimo, L. T. J. Cell Biol. 89, 373–378 (1981).

    CAS  Article  Google Scholar 

  2. Mclntosh, J. R. & Euteneuer, U. J. Cell Biol. 98, 525–533 (1984).

    Article  Google Scholar 

  3. Kirschner, M. W. & Mitchison, T. J. Cell 45, 329–342 (1986).

    CAS  Article  Google Scholar 

  4. Inoue, S. & Salmon, E. D. Molec. cell. Biol. 6, 1619–1640 (1995).

    CAS  Article  Google Scholar 

  5. Hyman, A. A. & Karsenti, E. Cell 84, 401–411 (1996).

    CAS  Article  Google Scholar 

  6. Theurkauf, W. E. & Hawley, R. A. J. Cell Biol. 116, 1167–1180 (1992).

    CAS  Article  Google Scholar 

  7. Gard, D. L. Devl Biol. 151, 516–530 (1992).

    CAS  Article  Google Scholar 

  8. Lambert, A. M. & Lloyd, C. W. in Microtubules (eds Hyams, J. & Lloyd, C. W.) 325–342 (Wiley-Liss, New York, 1994).

    Google Scholar 

  9. Bajer, A. S. & Mole Bajer, J. Cold Spring Harb. Symp. quant. Biol. 46, 263–283 (1982).

    Article  Google Scholar 

  10. Albertson, D. G. & Thomson, J. N. Chromosome Res. 1, 15–26 (1993).

    CAS  Article  Google Scholar 

  11. Karsenti, E., Newport, J. & Kirschner, M. J. Cell Biol. 99, 47s–57s (1984).

    CAS  Article  Google Scholar 

  12. Sawin, K. E. & Mitchison, T. J. J. Cell Biol. 112, 925–940 (1990).

    Article  Google Scholar 

  13. Zhang, D. & Nicklas, R. B. J. Cell Biol. 129, 1287–1300 (1995).

    CAS  Article  Google Scholar 

  14. Sandaltzopoulos, R., Blank, T. & Becker, P. B. EMBO J. 13, 373–379 (1994).

    CAS  Article  Google Scholar 

  15. Swanson, C. P., Merz, T. & Young, W. J. Cytogenetics 494–496 (Prentice Hall, Englewood Cliffs, 1981).

    Google Scholar 

  16. Lourim, D. & Krohne, G. J. Cell Biol. 123, 501–512 (1993).

    CAS  Article  Google Scholar 

  17. Weis, K., Mattaj, I. W. & Lamond, A. I. Science 268, 1049–1053 (1995).

    ADS  CAS  Article  Google Scholar 

  18. Gard, D. L., Hafezi, S., Zhang, T. & Doxsey, S. J. J. Cell Biol. 110, 2033–2042 (1990).

    CAS  Article  Google Scholar 

  19. Vernos, I. & Karsenti, E. Curr. Opin. Cell Biol. 8, 4–9 (1996).

    CAS  Article  Google Scholar 

  20. Urrutia, R., McNiven, M. A., Albanesi, J. P., Murphy, D. B. & Kachar, B. Proc. natn. Acad. Sci. U.S.A. 88, 6701–6705 (1991).

    ADS  CAS  Article  Google Scholar 

  21. Hyman, A. A. J. Cell Sci. (suppl.) 14, 125–127 (1991).

    CAS  Article  Google Scholar 

  22. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    CAS  Article  Google Scholar 

  23. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. J. Cell Biol. 107, 1001–1009 (1988).

    CAS  Article  Google Scholar 

  24. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Nature 345, 266–268 (1990).

    ADS  CAS  Article  Google Scholar 

  25. Dogterom, M., Felix, M.-A. & Guet, C. C. & Liebler, S. J. Cell Biol. 133, 125–140 (1996).

    CAS  Article  Google Scholar 

  26. Pellman, D., Bagget, M., Tu, H. & Fink, G. R. J. Cell Biol. 130, 1373–1385 (1995).

    CAS  Article  Google Scholar 

  27. Verde, F., Berrez, J. M., Antony, C. & Karsenti, E. J. Cell Biol. 112, 1177–1187 (1991).

    CAS  Article  Google Scholar 

  28. Vernos, I. & Karsenti, E. Trends Cell Biol. 5, 297–301 (1995).

    CAS  Article  Google Scholar 

  29. Pfarr, C. M. et al. Nature 345, 263–265 (1990).

    ADS  CAS  Article  Google Scholar 

  30. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. J. Cell Biol. 132, 617–634 (1996).

    CAS  Article  Google Scholar 

  31. Murray, A. M. Meth. Cell Biol. 36, 591–603 (1991).

    Google Scholar 

  32. Mitchison, T. J. a. K. & Kirschner, M. W. Nature 312, 232–236 (1984).

    ADS  CAS  Article  Google Scholar 

  33. Hyman, A. A. et al. Meth Enzym. 196, 478–485 (1991).

    CAS  Article  Google Scholar 

  34. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. J. Cell Biol. 118, 1097–1108 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heald, R., Tournebize, R., Blank, T. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996). https://doi.org/10.1038/382420a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382420a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing