Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of dendritic structure on firing pattern in model neocortical neurons


NEOCORTICAL neurons display a wide range of dendritic morphologies, ranging from compact arborizations to highly elaborate branching patterns1. In vitro electrical recordings from these neurons have revealed a correspondingly diverse range of intrinsic firing patterns, including non-adapting, adapting and bursting types2,3. This heterogeneity of electrical responsivity has generally been attributed to variability in the types and densities of ionic channels. We show here, using compartmental models of reconstructed cortical neurons, that an entire spectrum of firing patterns can be reproduced in a set of neurons that share a common distribution of ion channels and differ only in their dendritic geometry. The essential behaviour of the model depends on partial electrical coupling of fast active conductances localized to the soma and axon and slow active currents located throughout the dendrites, and can be reproduced in a two-compartment model. The results suggest a causal relationship for the observed correlations between dendritic structure and firing properties3–7 and emphasize the importance of active dendritic conductances in neuronal function8–10.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Peters, A. & Jones, E. G. Cerebral Cortex Vol 1: Cellular Components of the Cerebral Cortex (Plenum, New York, 1984).

    Google Scholar 

  2. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  3. Connors, B. W. & Gutnick, M. J. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  4. Chagnac-Amitai, Y., Luhmann, H. J. & Prince, D. A. J. comp. Neurol. 296, 598–613 (1990).

    Article  CAS  Google Scholar 

  5. Mason, A. & Larkman, A. U. J. Neurosci. 10, 1415–1428 (1990).

    Article  CAS  Google Scholar 

  6. Franceschetti, S., Guatteo, E., Panzica, F., Sancini, G. E. W. & Avanzini, G. Brain Res. 696, 127–139 (1995).

    Article  CAS  Google Scholar 

  7. Yang, C. R., Seamans, J. K. & Gorelova, N. J. Neurosci. 16, 1904–1921 (1996).

    Article  CAS  Google Scholar 

  8. Mainen, Z. F., Joerges, J., Huguenard J. R. & Sejnowski, T. J. Neuron 15, 1427–1439 (1995).

    Article  CAS  Google Scholar 

  9. Yuste, R. & Tank, D. W. Neuron 16, 701–716 (1996).

    Article  CAS  Google Scholar 

  10. Rapp, M., Yarom, Y. & Segev, I. Proc. natn. Acad. Sci. U.S.A. (in the press).

  11. Stuart, G. J. & Sakmann, B. Nature 367, 69–72 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Wollner, D. A. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 83, 8424–8428 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Angelides, K. J., Elmer, L. W., Loftus, D. & Elson, E. J. Cell Biol. 106, 1911–1924 (1988).

    Article  CAS  Google Scholar 

  14. Schwindt, P. C. et al. J. Neurophysiol. 59, 424–449 (1988).

    Article  CAS  Google Scholar 

  15. Storm, J. F. Prog. Brain Res. 83, 161–187 (1990).

    Article  CAS  Google Scholar 

  16. Kim, H. G. & Connors, B. W. J. Neurosci. 13, 5301–5311 (1993).

    Article  CAS  Google Scholar 

  17. Yuste, R., Gutnick, M. J., Saar, D., Delaney, R. D. & Tank, D. W. Neuron 13, 23–43 (1994).

    Article  CAS  Google Scholar 

  18. Pinsky, P. F. & Rinzel, J. J. comput. Neurosci. 1, 39–60 (1994).

    Article  CAS  Google Scholar 

  19. Turner, R. W., Maler, L., Deerinck, T., Levinson, S. R. & Ellisman, M. H. J. Neurosci. 14, 6453–6471 (1994).

    Article  CAS  Google Scholar 

  20. Azouz, R., Jensen, M. S. & Yaari, Y. J. Physiol. 492, 211–223 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Granit, R., Kernell, D. & Smith, R. S. J. Physiol. 168, 100–115 (1963).

    Google Scholar 

  22. Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).

    Article  CAS  Google Scholar 

  23. Larkman, A. U., Major, G., Stratford, K. J. & Jack, J. J. B. J. comp. Neurol. 323, 137–152 (1992).

    Article  CAS  Google Scholar 

  24. Kasper, E. M., Larkman, A. U., Lubke, J. & Blakemore, C. J. comp. Neurol. 339, 475–494 (1994).

    Article  CAS  Google Scholar 

  25. Agmon, A. & Connors, B. W. J. Neurosci. 12, 319–329 (1993).

    Article  Google Scholar 

  26. Hines, M. In Neural Systems: Analysis and Modeling (ed. Eeckman, F. H.) 127–136 (Kluwer, Boston, MA, 1993).

    Book  Google Scholar 

  27. Hamill, O. P., Huguenard, J. R. & Prince, D. A. Cerebral Cortex 1, 48–61 (1991).

    Article  CAS  Google Scholar 

  28. Gutfreund, Y., Yarom, Y. & Segev, I. J. Physiol. 483, 621–640 (1995).

    Article  CAS  Google Scholar 

  29. Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. J. J. Neurosci. 13, 4609–4621 (1993).

    Article  CAS  Google Scholar 

  30. Sloper, J. J. & Powell, T. P. S. Phil. Trans. R. Soc. Lond. B285, 173–197 (1978).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mainen, Z., Sejnowski, T. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing