Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correct Hox gene expression established independently of position in Caenorhabditis elegans

Abstract

THE Hox genes are expressed in a conserved sequence of spatial domains along the anteroposterior (A/P) body axes of many organisms1. In Drosophila, position-specific signals located along the A/P axis establish the pattern of Hox gene expression2–4. In the nematode Caenorhabditis elegans, it is not known how the pattern of Hox gene expression is established. C. elegans uses lineal control mechanisms and local cell interactions to specify early blastomere identities5,6. However, many cells expressing the same Hox gene are unrelated by lineage, suggesting that, as in Drosophila, domains of Hox gene expression may be defined by cell-extrinsic A/P positional signals. To test this, we have investigated whether posterior mesodermal and ectodermal cells will express their normal posterior Hox gene when they are mispositioned in the anterior. Surprisingly, we find that correct Hox gene expression does not depend on cell position, but is highly correlated with cell lineage. Thus, although the most striking feature of Hox gene expression is its positional specificity, in C. elegans the pattern is achieved, at least in part, by a lineage-specific control system that operates without regard to A/P position.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McGinnis, W. & Krumlauf, R. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  2. Lawrence, P. A. & Morata, G. Cell 78, 181–190 (1994).

    Article  CAS  Google Scholar 

  3. McGinnis, W. et al. Adv. Genet. 27, 363–402 (1990).

    Article  CAS  Google Scholar 

  4. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  5. Priess, J. R. Curr. Biol. 4, 563–568 (1994).

    CAS  Google Scholar 

  6. Wood, W. B. & Edgar, L. G. Trends Genet. 10, 49–54 (1994).

    Article  CAS  Google Scholar 

  7. Wang, B. B. et al. Cell 74, 29–42 (1993).

    Article  CAS  Google Scholar 

  8. Clark, S. G., Chisholm, A. D. & Horvitz, H. R. Cell 74, 43–55 (1993).

    Article  CAS  Google Scholar 

  9. Sulston, J., Schierenberg, E., White, J. & Thomson, J. Devl Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  10. Singer, S. J. & Kupfer, A. A. Rev. Cell Biol. 2, 337–365 (1986).

    Article  CAS  Google Scholar 

  11. Dustin, P. Microtubules (Springer, New York, 1984).

    Book  Google Scholar 

  12. Hutter, H. & Schnabel, R. Development 120, 2051–2064 (1994).

    CAS  PubMed  Google Scholar 

  13. Moskowitz, I. P. G., Gendreau, S. B. & Rothman, J. H. Development 120, 3325–3338 (1994).

    CAS  PubMed  Google Scholar 

  14. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Science 263, (1994).

    Article  ADS  CAS  Google Scholar 

  15. Hird, S. N. & White, J. G. J. Cell Biol. 121, 1343–1355 (1993).

    Article  CAS  Google Scholar 

  16. Nardelli-Haefliger, D., Bruce, A. E. E. & Shankland, M. Development 120, 1839–1849 (1994).

    CAS  PubMed  Google Scholar 

  17. Kenyon, C. Cell 46, 477–487 (1986).

    Article  CAS  Google Scholar 

  18. Salser, S., Loer, C. & Kenyon, C. Genes Dev. 7, 1714–1724 (1993).

    Article  CAS  Google Scholar 

  19. Cowing, D. W. & Kenyon, C. Development 116, 481–490 (1992).

    CAS  PubMed  Google Scholar 

  20. Priess, J. & Hirsch, D. Devl Biol. 117, 156–173 (1986).

    Article  CAS  Google Scholar 

  21. Cowan, A. & Mclntosh, J. Cell 41, 923–932 (1985).

    Article  CAS  Google Scholar 

  22. Mello, C. C., Draper, B. W. & Priess, J. R. Cell 77, 95–106 (1994).

    Article  CAS  Google Scholar 

  23. Hutter, H. & Schnabel, R. Development 121, 1559–1568 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowing, D., Kenyon, C. Correct Hox gene expression established independently of position in Caenorhabditis elegans. Nature 382, 353–356 (1996). https://doi.org/10.1038/382353a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382353a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing