Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle

Abstract

THE sulphur cycle has evolved over the course of the Earth's history1,2. The early Earth's surface environment was reducing, containing little atmospheric oxygen3, and with seawater sulphate concentrations estimated at less than a few per cent of those found today. The accumulation of sulphate in the ocean to much higher concentrations was probably coincident with the initial accumulation of oxygen in the atmosphere and the consequent oxidative weathering of sulphide minerals on land4,5. Past changes in sulphate concentrations in ancient oceans have previously been assessed by comparing the systematics of sulphur isotope fractionation by sulphate-reducing bacteria6–9 with the isotopic composition of sedimentary sulphides1,2,5,10,11. But such interpretations have proven equivocal: the generally small 34S depletions in Archaean sulphides (deposited 2.5–3.8 billion years ago) have been separately argued to result both from rapid sulphate reduction in a sulphate-rich ocean5,12, and from sulphide formation in a sulphate-poor ocean1,2,11. Here we report large 34S depletions of 20–25%, observed during rapid sulphate reduction by sulphate-reducing bacteria in modern photosynthetic cyano-bacterial mats from Solar Lake, Sinai. We conclude that high sulphate concentrations give rise to highly 34S-depleted sulphides, and thus that appreciable concentrations of seawater sulphate did not accumulate until the initial accumulation of oxygen into the atmosphere in post-Archaean times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schidlowski, M., Hayes, J. M. & Kaplan, I. R. in Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 149–186 (Princeton Univ. Press, Princeton, New Jersey, 1983).

    Google Scholar 

  2. Cameron, E. M. Nature 296, 145–148 (1982).

    Article  CAS  ADS  Google Scholar 

  3. Kasting, J. F. Science 259, 920–926 (1993).

    Article  CAS  ADS  Google Scholar 

  4. Walker, J. C. G. & Brimblecombe, P. Precambr. Res. 28, 205–222 (1985).

    Article  CAS  ADS  Google Scholar 

  5. Ohmoto, H., Kakegawa, T. & Lowe, D. R. Science 262, 555–557 (1993).

    Article  CAS  ADS  Google Scholar 

  6. Kaplan, I. R. & Rittenberg, S. C. J. gen. Microbiol. 34, 195–212 (1964).

    Article  CAS  Google Scholar 

  7. Kemp, A. L. W. & Thode, H. G. Geochim. cosmochim. Acta 32, 71–91 (1968).

    Article  CAS  ADS  Google Scholar 

  8. Chambers, L. A., Trudinger, P. A., Smith, J. W. & Burns, M. S. Can. J. Microbiol. 21, 1602–1607 (1975).

    Article  CAS  Google Scholar 

  9. Goldhaber, M. B. & Kaplan, I. R. Soil Sci. 119, 42–55 (1975).

    Article  CAS  ADS  Google Scholar 

  10. Goodwin, A. M., Monster, J. & Thode, H. G. Econ. Geol. 71, 870–891 (1976).

    Article  CAS  Google Scholar 

  11. Hattori, K., Krouse, H. R. & Campbell, F. A. Science 221, 549–551 (1983).

    Article  CAS  ADS  Google Scholar 

  12. Ohmoto, H. & Felder, R. P. Nature 328, 244–246 (1987).

    Article  CAS  ADS  Google Scholar 

  13. Harrison, A. G. & Thode, H. G. Trans. Faraday Soc. 54, 84–92 (1958).

    Article  CAS  Google Scholar 

  14. Canfield, D. E. & Teske, A. Nature 382, 127–132 (1996).

    Article  CAS  ADS  Google Scholar 

  15. Harrison, A. G. & Thode, H. G. Trans. Faraday Soc. 53, 1648–1651 (1957).

    Article  CAS  Google Scholar 

  16. Schidlowski, M. Origins of Life 9, 299–311 (1979).

    Article  CAS  ADS  Google Scholar 

  17. Hattori, K., Campbell, F. A. & Krouse, H. R. Nature 302, 323–326 (1983).

    Article  CAS  ADS  Google Scholar 

  18. Lambert, I. B. & Donnelly, T. H. in Stable Isotopes and Fluid Processes in Mineralization (eds Herbert, H. K. & Ho, S. E.) 260–268 (Geology Department and Unviersity Extension, Perth, Australia, 1990).

    Google Scholar 

  19. Monster, J. et al. Geochim. cosmochim. Acta 43, 405–413 (1979).

    Article  CAS  ADS  Google Scholar 

  20. Donnelly, T. H. et al. J. geol. Soc. Australia 24, 409–420 (1977).

    Article  CAS  Google Scholar 

  21. Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere. A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–132 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  22. Canfield, D. E. & Thamdrup, B. Science 266, 1973–1975 (1994).

    Article  CAS  ADS  Google Scholar 

  23. Des Marais, D. J. Trends Ecol. Evol. 5, 140–143 (1990).

    Article  CAS  Google Scholar 

  24. Jørgensen, B. B. FEMS Microbiol. Ecol. 13, 303–312 (1994).

    Article  Google Scholar 

  25. Canfield, D. E. & Des Marais, D. J. Geochim. cosmochim. Acta 57, 3971–3984 (1993).

    Article  CAS  ADS  Google Scholar 

  26. Harrison, A. W. et al. in Coastal Upwelling (ed. Richards, F. A.) 303–311 (American Geophysical Union, Washington DC, 1981).

    Book  Google Scholar 

  27. Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Limnol. Oceanogr. 28, 1062–1074 (1983).

    Article  ADS  Google Scholar 

  28. Jørgensen, B. B. & Cohen, Y. Limnol. Oceanogr. 22, 657–666 (1977).

    Article  ADS  Google Scholar 

  29. Des Marais, D. J. et al. Nature 359, 605–609 (1992).

    Article  CAS  ADS  Google Scholar 

  30. Holland, H. D. in Early Life on Earth (ed. Bengston, S.) 237–244 (Columbia University Press, New York, 1994).

    Google Scholar 

  31. Canfield, D. E. et al. Chem. Geol. 54, 149–155 (1986).

    Article  CAS  ADS  Google Scholar 

  32. Cameron, E. M. & Hattori, K. Chem. Geol. 65, 341–358 (1987).

    CAS  Google Scholar 

  33. Cline, J. D. Limnol. Oceanogr. 14, 454–458 (1969).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habicht, K., Canfield, D. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342–343 (1996). https://doi.org/10.1038/382342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing