Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle

Abstract

THE sulphur cycle has evolved over the course of the Earth's history1,2. The early Earth's surface environment was reducing, containing little atmospheric oxygen3, and with seawater sulphate concentrations estimated at less than a few per cent of those found today. The accumulation of sulphate in the ocean to much higher concentrations was probably coincident with the initial accumulation of oxygen in the atmosphere and the consequent oxidative weathering of sulphide minerals on land4,5. Past changes in sulphate concentrations in ancient oceans have previously been assessed by comparing the systematics of sulphur isotope fractionation by sulphate-reducing bacteria6–9 with the isotopic composition of sedimentary sulphides1,2,5,10,11. But such interpretations have proven equivocal: the generally small 34S depletions in Archaean sulphides (deposited 2.5–3.8 billion years ago) have been separately argued to result both from rapid sulphate reduction in a sulphate-rich ocean5,12, and from sulphide formation in a sulphate-poor ocean1,2,11. Here we report large 34S depletions of 20–25%, observed during rapid sulphate reduction by sulphate-reducing bacteria in modern photosynthetic cyano-bacterial mats from Solar Lake, Sinai. We conclude that high sulphate concentrations give rise to highly 34S-depleted sulphides, and thus that appreciable concentrations of seawater sulphate did not accumulate until the initial accumulation of oxygen into the atmosphere in post-Archaean times.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Schidlowski, M., Hayes, J. M. & Kaplan, I. R. in Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 149–186 (Princeton Univ. Press, Princeton, New Jersey, 1983).

  2. 2

    Cameron, E. M. Nature 296, 145–148 (1982).

  3. 3

    Kasting, J. F. Science 259, 920–926 (1993).

  4. 4

    Walker, J. C. G. & Brimblecombe, P. Precambr. Res. 28, 205–222 (1985).

  5. 5

    Ohmoto, H., Kakegawa, T. & Lowe, D. R. Science 262, 555–557 (1993).

  6. 6

    Kaplan, I. R. & Rittenberg, S. C. J. gen. Microbiol. 34, 195–212 (1964).

  7. 7

    Kemp, A. L. W. & Thode, H. G. Geochim. cosmochim. Acta 32, 71–91 (1968).

  8. 8

    Chambers, L. A., Trudinger, P. A., Smith, J. W. & Burns, M. S. Can. J. Microbiol. 21, 1602–1607 (1975).

  9. 9

    Goldhaber, M. B. & Kaplan, I. R. Soil Sci. 119, 42–55 (1975).

  10. 10

    Goodwin, A. M., Monster, J. & Thode, H. G. Econ. Geol. 71, 870–891 (1976).

  11. 11

    Hattori, K., Krouse, H. R. & Campbell, F. A. Science 221, 549–551 (1983).

  12. 12

    Ohmoto, H. & Felder, R. P. Nature 328, 244–246 (1987).

  13. 13

    Harrison, A. G. & Thode, H. G. Trans. Faraday Soc. 54, 84–92 (1958).

  14. 14

    Canfield, D. E. & Teske, A. Nature 382, 127–132 (1996).

  15. 15

    Harrison, A. G. & Thode, H. G. Trans. Faraday Soc. 53, 1648–1651 (1957).

  16. 16

    Schidlowski, M. Origins of Life 9, 299–311 (1979).

  17. 17

    Hattori, K., Campbell, F. A. & Krouse, H. R. Nature 302, 323–326 (1983).

  18. 18

    Lambert, I. B. & Donnelly, T. H. in Stable Isotopes and Fluid Processes in Mineralization (eds Herbert, H. K. & Ho, S. E.) 260–268 (Geology Department and Unviersity Extension, Perth, Australia, 1990).

  19. 19

    Monster, J. et al. Geochim. cosmochim. Acta 43, 405–413 (1979).

  20. 20

    Donnelly, T. H. et al. J. geol. Soc. Australia 24, 409–420 (1977).

  21. 21

    Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere. A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–132 (Cambridge Univ. Press, Cambridge, 1992).

  22. 22

    Canfield, D. E. & Thamdrup, B. Science 266, 1973–1975 (1994).

  23. 23

    Des Marais, D. J. Trends Ecol. Evol. 5, 140–143 (1990).

  24. 24

    Jørgensen, B. B. FEMS Microbiol. Ecol. 13, 303–312 (1994).

  25. 25

    Canfield, D. E. & Des Marais, D. J. Geochim. cosmochim. Acta 57, 3971–3984 (1993).

  26. 26

    Harrison, A. W. et al. in Coastal Upwelling (ed. Richards, F. A.) 303–311 (American Geophysical Union, Washington DC, 1981).

  27. 27

    Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Limnol. Oceanogr. 28, 1062–1074 (1983).

  28. 28

    Jørgensen, B. B. & Cohen, Y. Limnol. Oceanogr. 22, 657–666 (1977).

  29. 29

    Des Marais, D. J. et al. Nature 359, 605–609 (1992).

  30. 30

    Holland, H. D. in Early Life on Earth (ed. Bengston, S.) 237–244 (Columbia University Press, New York, 1994).

  31. 31

    Canfield, D. E. et al. Chem. Geol. 54, 149–155 (1986).

  32. 32

    Cameron, E. M. & Hattori, K. Chem. Geol. 65, 341–358 (1987).

  33. 33

    Cline, J. D. Limnol. Oceanogr. 14, 454–458 (1969).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Habicht, K., Canfield, D. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342–343 (1996). https://doi.org/10.1038/382342a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.