Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using antibodies to perturb the coordination sphere of a transition metal complex


METAL ions in the active sites of many metalloenzymes exhibit distinctive spectral and chemical features which are different from those of small inorganic complexes1,2. These features are the result of the unusual geometric and electronic constraints that are imposed on the metal ion within the protein environment3. Much effort has been invested to try to mimic this feature of metalloenzymes in synthetic systems, but this remains a formidable task. Here we show that one of the key lessons learned from the science of catalytic antibodies—that binding energy can be converted into chemical energy4—can be exploited to 'fine-tune' the physicochemical properties of a metal complex. We show that an antibody's binding site can reversibly perturb the coordination geometry of a metal ion, and can stabilize a high-energy coordinated species5. Specifically, antibodies designed to bind the organosilicon compound 1 (Fig. 1) also bind the geometrically similar Cu(I) complex 2. However, the antibody binds a slightly compressed form of 2, which is closer in size to 1. This distortion is manifested by a spectral shift—an 'immunochromic' effect.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Vallee, B. L. & Williams, R. J. P. Proc. natn. Acad. Sci. U.S.A. 59, 498–505 (1968).

    ADS  CAS  Article  Google Scholar 

  2. Williams, R. J. P. Eur. J. Biochem. 234, 363–381 (1995).

    CAS  Article  Google Scholar 

  3. Solomon, E. I. & Lowery, M. D. Science 259, 1575–1581 (1993).

    ADS  CAS  Article  Google Scholar 

  4. Schultz, P. G. & Lerner, R. A. Science 269, 1835–1842 (1995).

    ADS  CAS  Article  Google Scholar 

  5. Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Angew. Chem. int. Edn engl. 27, 1172–1174 (1988).

    Article  Google Scholar 

  6. Nabeshima, T., Inaba, T., Furukawa, N., Hosoya, T. & Yano, Y. Inorg. Chem. 32, 1407–1416 (1993).

    CAS  Article  Google Scholar 

  7. Kitagawa, S. & Munakata, M. Inorg. Chem. 20, 2261–2267 (1981).

    CAS  Article  Google Scholar 

  8. Kohler, G. & Milstein, C. Nature 256, 495–497 (1975).

    ADS  CAS  Article  Google Scholar 

  9. Williams, R. J. P. J. chem. Soc. 137–145 (1955).

  10. Palmer, R. A. & Piper, T. S. Inorg. Chem. 5, 864–878 (1966).

    CAS  Article  Google Scholar 

  11. Shabat, D., Itzhaky, H., Reymond, J.-L. & Keinan, E. Nature 374, 143–146 (1995).

    ADS  CAS  Article  Google Scholar 

  12. Lewis, C. T., Krämer, T., Robinson, S. & Hilvert, D. Science 253, 1019–1022 (1991).

    ADS  CAS  Article  Google Scholar 

  13. Lewis, C. T., Paneth, P., O'Leary, M. H. & Hilvert, D. J. Am. chem. Soc. 115, 1410–1413 (1993).

    CAS  Article  Google Scholar 

  14. Keinan, E. et al. Inorg. Chem. 31, 5433–5438 (1992).

    CAS  Article  Google Scholar 

  15. Zeigler, T. Can. J. Chem. 73, 743–761 (1995).

    Article  Google Scholar 

  16. Rosa, A. & Baerends, E. J. Inorg. Chem. 33, 584–595 (1994).

    CAS  Article  Google Scholar 

  17. Noodleman, L. & Baerends, E. J. J. Am. chem. Soc. 106, 2316–2327 (1984).

    CAS  Article  Google Scholar 

  18. Jones, D. H., Hinman, A. S. & Ziegler, T. Inorg. Chem. 32, 2092–2095 (1993).

    CAS  Article  Google Scholar 

  19. Steward, M. W. & Steensgaard, J. in Antibody Affinity: Thermodynamic Aspects and Biological Significance 76–77 (CRC Press, Roca Raton, Florida, 1983).

    Google Scholar 

  20. Karlin, K. D. & Yandell, J. K. Inorg. Chem. 23, 1184–1188 (1984).

    CAS  Article  Google Scholar 

  21. Hathaway, B. J. in Comprehensive Coordination Chemistry Vol. 5 (ed. Wilkinson, G.) 533–774 (Pergamon, New York, 1987).

    Google Scholar 

  22. Johnson, J. E., Beineke, T. A. & Jacobson, R. A. J. chem. Soc. (A) 1371–1374 (1971).

  23. Foley, J., Tyagi, S. & Hathaway, B. J. J. chem. Soc. Dalton Trans. 1, 1–5 (1994).

  24. Bard, A. J. (ed.) in Encyclopedia of Electrochemistry of the Elements IX A 172–211 (Dekker, New York, 1983).

  25. Vosko, S. H., Wilk, L. & Nusair, M. Can. J. Phys. 58, 1200–1211 (1980).

    ADS  CAS  Article  Google Scholar 

  26. Becke, A. D. J. chem. Phys. 84, 4524–4529 (1986).

    ADS  CAS  Article  Google Scholar 

  27. Perdew, J. P. Phys. Rev. B33, 8822–8824 (1986).

    ADS  CAS  Article  Google Scholar 

  28. te Velde, G. & Baerends, E. J. J. comput. Phys. 99, 84–98 (1992).

    ADS  CAS  Article  Google Scholar 

  29. Ziegler, T., Rauk, A. & Baerends, E. J. Theor. chim. Acta 43, 261–273 (1977).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghosh, P., Shabat, D., Kumar, S. et al. Using antibodies to perturb the coordination sphere of a transition metal complex. Nature 382, 339–341 (1996).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing