Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of Taq polymerase with DNA at the polymerase active site

Abstract

THE DNA polymerase from Thermus aquaticus (Taq polymerase) is homologous to Escherichia coli DNA polymerase I (Pol I) and likewise has domains responsible for DNA polymerase and 5′ nuclease activities1,2. The structures of the polymerase domains of Taq polymerase and of the Klenow fragment (KF) of Pol I are almost identical, whereas the structure of a vestigial editing 3′–5′ exonuclease domain of Taq polymerase that lies between the other two domains is dramatically altered, resulting in the absence of this activity in the thermostable enzyme2. The structures have been solved for editing complexes between KF and single-stranded DNA3,4 and for duplex DNA with a 3′ overhanging single strand5, but not for a complex containing duplex DNA at the polymerase active-site. Here we present the co-crystal structure of Taq polymerase with a blunt-ended duplex DNA bound to the polymerase active-site cleft; the DNA neither bends nor goes through the large polymerase cleft, and the structural form of the bound DNA is between the B and A forms. A wide minor groove allows access to protein side chains that hydrogen-bond to the N3 of purines and the O2 of pyrimidines at the blunt-end terminus. Part of the DNA bound to the polymerase site shares a common binding site with DNA bound to the exonuclease site, but they are translated relative to each other by several ångströms along their helix axes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lawyer, F. C. et al. J. biol. Chem. 264, 6427–6437 (1989).

    CAS  PubMed  Google Scholar 

  2. Kim, Y. et al. Nature 376, 612–616 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Freemont, P. S. et al. Proc. natn. Acad. Sci. U.S.A. 85, 8924–8928 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Beese, L. S. & Steitz, T. A. EMBO J. 10, 25–33 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beese, L. S., Derbyshire, V. & Steitz, T. A. Science 260, 352–355 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Nature 313, 762–766 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Joyce, C. M. & Steitz, T. A. A. Rev. Biochem. 63, 777–822 (1994).

    Article  CAS  Google Scholar 

  8. Pelletier, H. et al. Science 264, 1891–1903 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Steitz, T. A., Smerdon, S. J., Jaeger, J. & Joyce, C. M. Science 266, 2022–2025 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  11. Steitz, T. A. Curr. Opin. struct. Biol. 3, 31–38 (1993).

    Article  CAS  Google Scholar 

  12. Braithwaite, D. K. & Ito, J. Nucleic Acids Res. 21, 787–802 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Astatke, M., Grindley, N. D. F. & Joyce, C. M. J. molec. Biol. 270, 1945–1954 (1995).

    CAS  Google Scholar 

  14. Polesky, A. H., Steitz, T. A., Grindley, N. D. F. & Joyce, C. M. J. biol. Chem. 265, 14579–14591 (1990).

    CAS  PubMed  Google Scholar 

  15. Polesky, A. H., Dahlberg, M. E., Benkovic, S. J., Grindley, N. F. D. & Joyce, C. M. J. biol. Chem. 267, 8417–8428 (1992).

    CAS  PubMed  Google Scholar 

  16. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 92, 6339–6343 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Conner, B. N. et al. Nature 295, 294–299 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Seeman, N. C., Rosenberg, J. M. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 73, 804–808 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Steitz, T. A. et al. Cold Spring Harbor Symp. quant. Biol. 52, 465–471 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Steitz, T. A. in Biological Organization: Macromolecular Interactions at High Resolution 45–55 (Academic, New York, 1992).

    Google Scholar 

  21. Georgiadis, M. M. et al. Structure 3, 879–892 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Jacobo-Molina, A. et al. Proc. natn. Acad. Sci. U.S.A. 90, 6320–6324 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. & Steitz, T. A. Science 256, 1783–1790 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Brutlag, D. & Kornberg, A. J. biol. Chem. 247, 241–248 (1972).

    CAS  PubMed  Google Scholar 

  25. Joyce, C. M. J. biol. Chem. 264, 10858–10866 (1989).

    CAS  PubMed  Google Scholar 

  26. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Burley, S.) 56–62 (SERC Daresbury Laboratory, UK, 1993).

    Google Scholar 

  27. Brünger, A. T. X-PLOR version 3.1 (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  28. Read, R. J. Acta crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  29. Lee, B. K. & Richards, F. M. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. Tabor, S., Huber, H. E. & Richardson, C. C. J. biol. Chem. 262, 16212–16223 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eom, S., Wang, J. & Steitz, T. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382, 278–281 (1996). https://doi.org/10.1038/382278a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382278a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing